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Preface

This book is a reworked and enlarged version of the author’s book [82].
The first chapter of the book presents the theory of spinors in n-dimensional (in

general case complex) Euclidean spaces. The second chapter contains an exposition
of the theory of spinors in Riemannian spaces. The third and fourth chapters are
devoted to the theory of spinors and to the methods of their tensor representation
in four- and three-dimensional spaces. Along with the material in the book [82],
these chapters contain the results of recent papers, related in particular to the use
of proper orthonormal tetrads defined by spinors. Some very useful relations are
obtained that express the derivatives of the spinor fields in terms of the derivatives
of various tensor fields.

The main content of the fifth chapter is the tensor representation of a wide class
of relativistically invariant spinor differential equations that contain, as a particular
case, the known spinor equations of field theory. As an example of the application
of the theory in Chap. 6, we give a series of exact solutions of nonlinear spinor
equations used in the theory of elementary particles. In particular, we give a general
exact solution of the Einstein–Dirac equations in homogeneous Riemannian spaces
and also a series of exact solutions of nonlinear Heisenberg equations. To integrate
spinor equations in Riemannian space, a new invariant tetrad gauge is used, which
makes it possible to reduce the number of unknown functions in the equations by six
units. In the same chapter, with the aid of spinor theory methods, some integrals are
given for partial differential equations describing spin fluids in an electromagnetic
field; their exact wave solutions are considered.

In Appendix A, on the basis of the variational equation, a closed system of
differential equations describing spin liquids interacting with an electromagnetic
field is obtained; here, we also study the problem of the invariant definition of the
internal energy of the electromagnetic field. In Appendix B, the problem of invariant
determination of the energy of a free electromagnetic field in the form of a four-
dimensional scalar (an analog of internal energy in the mechanics of a continuous
medium) is considered.

The book is basically aimed at physical applications and is destined, above all,
for physicists. Therefore, the presentation of the material is based on the use of
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vi Preface

well-established classical terminology and methods of differential geometry, which
requires a minimum of mathematical preparation of the reader, restricted to the first
years of university programme. In particular, the knowledge of the basics of tensor
algebra and analysis is assumed.

Moscow, Russia Vladimir A. Zhelnorovich
February 2018



From the Preface to the Book [82] Theory
of Spinors and Its Application in Physics
and Mechanics (in Russian)

The existence of spinors and spinor representations of orthogonal groups was
discovered by Cartan in 1913 [12]. Studies of the theory of spinors were stimulated
both by purely mathematical requirements (in the theory of group representations)
and by physical applications in quantum mechanics and field theory. At the present
time, the journal literature concerned with the algebraic theory of spinors and
its applications amounts to thousands of publications. Meanwhile, the problems
associated with an invariant description of spinors as objects that do not depend
on the choice of a coordinate system are either bypassed or presented in essence
incorrectly. The present book, to some extent, fills this gap.

As is known, the finite-dimensional linear representations of orthogonal groups
are exhausted by tensor and spinor representations. Therefore, geometric objects
associated with representations of orthogonal groups are exhausted by tensors and
spinors of various ranks. The theory of tensors and tensor calculus are widely used
in modern physics; they represent the basic mathematical formalism of modern
physical theories. The theory of spinors at present is mainly used in field theory
and quantum mechanics (if we talk about physical applications). In this book, the
notion of a spinor and spinor calculus is also used in the mechanics of continuous
media.The theory of spinors is expounded in the first three chapters. The main
attention is paid here to the concepts of invariant algebraic and geometric relations
between spinors and tensors. The classical relations of the theory of spinors, which
are presented in the prevalent books, are here only mentioned in passing.

The material of the book has been mainly published in various special journals;
in part, it is published for the first time. The book does not aim to give a review of
the literature on the issues under consideration; however, such reviews are contained
in the cited literature.
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Abstract

The book contains a systematic exposition of the theory of spinors in finite-
dimensional Euclidean and Riemannian spaces; the application of spinors in field
theory and relativistic mechanics of continuous media is considered.

The main mathematical part is connected with the study of invariant algebraic
and geometric relations between spinors and tensors. The theory of spinors and the
methods of the tensor representation of spinors and spinor equations are specially
and thoroughly expounded in four-dimensional and three-dimensional spaces. As
an application, we consider an invariant tensor formulation of certain classes of
differential spinor equations containing, in particular, the most important spinor
equations of field theory and quantum mechanics; exact solutions of the Einstein–
Dirac equations, nonlinear Heisberg’s spinor equations, and equations for relativistic
spin fluids are given. The book contains a large factual material and can be used as
a handbook.

The book is intended for specialists in theoretical physics, as well as for students
and postgraduate students of physical and mathematical specialties.
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Chapter 1
Spinors in Finite-Dimensional Euclidean
Spaces

1.1 Algebra of γ -Matrices

Consider the matrix equation

◦
γ i

◦
γ j + ◦

γ j

◦
γ i = 2δij I, (1.1)

in which
◦
γ i are square, generally complex matrices of order 2ν , ν is a positive

integer; the indices i, j , determining the numbers of matrices
◦
γ , take all integer

values from 1 to 2ν; I is the unit matrix of order 2ν ; δij are the Kronecker delta:

δij = 1, if i = j,

δij = 0, if i �= j.

Let us introduce the matrices
◦
γ i1i2...ik

, defined with the aid of the matrices
◦
γ i

satisfying Eq. (1.1):

◦
γ i1i2...ik

= ◦
γ [i1

◦
γ i2

· · · ◦
γ ik ]. (1.2)

Alternation is meant over the indices i1i2 . . . ik placed in square brackets in Eq. (1.2)
(with division by k !).

Assuming that the matrices
◦
γ i , satisfying Eq. (1.1), do exist, let us establish some

general properties of the matrices (1.2) which do not depend on the specific form of
◦
γ i .

1

1The existence of matrices
◦
γ i satisfying Eq. (1.1) will be shown at the end of the present section.
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2 1 Spinors in Finite-Dimensional Spaces

1. For any matrix
◦
γ i1i2...ik

, defined by equality (1.3), there exists such a matrix
◦
γ j1j2...jm

that the following equality holds:

◦
γ i1i2...ik

◦
γ j1j2...jm

= − ◦
γ j1j2...jm

◦
γ i1i2...ik

. (1.3)

This property may be proved by directly pointing out, for each matrix
◦
γ i1i2...ik

,
the corresponding matrices that anti-commute with it. If the number of indices

i1i2 . . . ik is even, k = 2m, then, for example, any matrix
◦
γ j with j coinciding with

one of the indices i1i2 . . . ik , anticommutes with
◦
γ i1i2...ik

. If the number of indices

i1i2 . . . ik is odd, k = 2m+ 1, then any matrix
◦
γ j with j that does not coincide with

any of the indices i1i2 . . . ik, anticommutes with
◦
γ i1i2...ik

.

2. The square of a matrix
◦
γ i1i2...ik

is proportional to the unit matrix,

( ◦
γ i1i2...ik

)2 = (−1)
1
2 k(k−1)I. (1.4)

Equality (1.4) directly follows from Eq. (1.1) and definition (1.2).

3. All matrices
◦
γ i1i2...ik

for k = 1, 2, . . . , 2ν have zero traces. Indeed, taking into
account that any square matrices A, B, C satisfy the identity tr (ABC) = tr (CAB),
we find with (1.4):

tr
◦
γ i1i2...ik

= (−1)
1
2 m(m−1) tr

( ◦
γ i1i2...ik

◦
γ j1j2...jm

◦
γ j1j2...jm

)

= (−1)
1
2 m(m−1) tr

( ◦
γ j1j2...jm

◦
γ i1i2...ik

◦
γ j1j2...jm

)
. (1.5)

Choosing in (1.5), as the matrix
◦
γ j1j2...jm

, a matrix satisfying the relation (1.3),
we continue the equality (1.5):

tr
◦
γ i1i2...ik

= −(−1)
1
2 m(m−1) tr

( ◦
γ j1j2...jm

◦
γ j1j2...jm

◦
γ i1i2...ik

) = − tr
◦
γ i1i2...ik

.

The latter equality implies

tr
◦
γ i1i2...ik

= 0. (1.6)

4. The trace of a product of two matrices
◦
γ j1j2...jm

and
◦
γ i1i2...ik

is nonzero only
in the case when these matrices are the same (or differ in sign due to permutation of
indices when k = m).

Indeed, if the matrices
◦
γ j1j2...jm

and
◦
γ i1i2...ik

are different, then their product,

due to Eq. (1.1), reduces to some matrix
◦
γ q1q2...qn

whose trace is, according to (1.6),

equal to zero. If the matrices
◦
γ j1j2...jm

and
◦
γ i1i2...ik

are the same, then, according to
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Eq. (1.4), their product is proportional to the unit matrix, and its trace is nonzero.
The aforesaid may be written in the form of the equalities

tr
( ◦
γ i1i2...ik

◦
γ j1j2...jm

) = 0, if k �= m,

tr
( ◦
γ i1i2...ik

◦
γ j1j2...jk

) = (−1)
1
2 k(k−1)k ! 2νδ

j1
[i1δ

j2
i2

· · · δjkik]. (1.7)

The factor k ! in the right-hand side of the second equation (1.7) is connected
with the alternation performed over the indices i1i2 . . . ik in this formula.

5. The system of matrices

I,
◦
γ i,

◦
γ i1i2

, · · · , ◦
γ i1i2...i2ν

(i1 < i2 < · · · < i2ν) (1.8)

is linearly independent.
Indeed, consider the equation

αI +
2ν∑

k=1

αi1i2...ik
◦
γ i1i2...ik

= 0, (1.9)

in which all coefficients αi1i2...ik are antisymmetric in all indices, αi1i2...ik =
α[i1i2...ik]. In Eq. (1.9) and in what follows, we everywhere (unless otherwise
indicated) use the summing rule, according to which summing is performed by two
repeated indices over all values they take.

Taking the trace of Eq. (1.9), we find, taking into account (1.6) that the coefficient
α equals to zero, α = 0. Taking the trace of Eq. (1.9), multiplied beforehand by

the matrix
◦
γ j1j2...jm

, taking into account the equalities (1.6) and (1.7), we obtain

αj1j2 j̇m = 0. Thus if Eq. (1.9) holds, then all coefficients α, αi1 i2...ik in this equation
are zero, which proves linear independence of the system of matrices (1.8).

Evidently, the number of all matrices in (1.8) is equal to

1 + C1
2ν + C2

2ν + · · · + C2ν
2ν = 22ν

(Cλ
α is the number of combinations of λ elements from α).
Since the system of 22ν matrices (1.8) is linearly independent, it is obvious that

the minimum order of the matrices
◦
γ i satisfying Eq. (1.1) is equal to 2ν (in this

case, the number of matrix elements in
◦
γ i is equal to 22ν). It also evident that there

exist solutions of Eq. (1.1) in the form of matrices
◦
γ i of order s2ν , where s � 1 is

a positive integer. Such solutions may be taken, e.g., as quasi-diagonal matrices of
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the form

γ̌ i =

∥
∥
∥
∥∥
∥
∥
∥
∥∥

◦
γ i 0 . . . 0

0
◦
γ i . . . 0

...
...

. . .
...

0 0 . . .
◦
γ i

∥
∥
∥
∥∥
∥
∥
∥
∥∥

,

where
◦
γ i are the matrices of order 2ν satisfying Eq. (1.1), and 0 is the zero matrix

of order 2ν . One can show that all solutions of Eq. (1.1) are exhausted by matrices
similar to γ̌ i , i.e., have the form Tγ̌ iT

−1, where T is any nondegenerate matrix.

Note that all properties of the matrices
◦
γ i satisfying Eq. (1.1), formulated in items

1–5, are independent of the order of the matrices
◦
γ i .

It is clear that if the matrices
◦
γ i (i = 1, 2, . . . , 2ν), satisfying Eq. (1.1), have the

order 2ν , then the system of matrices (1.8) forms a basis in the full matrix algebra
over the field of complex numbers, whose dimension is 22ν.

6. Due to completeness of the set of matrices (1.8) and their linear independence,
any complex matrix Ψ of order 2ν may be represented in the form

Ψ = 1

2ν

(

FI +
2ν∑

k=1

1

k !F
i1i2...ik

◦
γ i1i2...ik

)

. (1.10)

To determine the coefficients F and F i1i2...ik in Eq. (1.10), let us multiply it by
◦
γ j1j2...jm and take the trace of the resulting expression. We then obtain

tr
(
Ψ

◦
γ j1j2...jm

) = 1

2ν

[
F tr

◦
γ j1j2...jm +

2ν∑

k=1

1

k !F
i1i2...ik tr

( ◦
γ i1i2...ik

◦
γ j1j2...jm

)
]
.

Hence, using Eqs. (1.7), we find for the coefficients F i1i2...ik :

F i1i2...ik = (−1)
1
2 k(k−1) tr

(
Ψ

◦
γ i1i2...ik

)
. (1.11)

Here2 ◦
γ i1i2...ik = ◦

γ i1i2...ik .
Taking the trace of (1.10), we find the coefficient F :

F = trΨ. (1.12)

2In what follows, the indices ik in
◦
γ matrices will be treated as the tensor indices in the Euclidean

space with the metric tensor determined in an orthonormal basis by components δij . Here, we are
so far formally using ik written at different places in order that the equations obtained be tensor
equations in an invariant form.
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In particular, one can take as Ψ in equality (1.10) a product of any matrices
◦
γ i1i2...ik

.
In this case, we will write equality (1.10) in the form

◦
γ i1i2...ik

◦
γ j1j2...jm = Ai1i2...ikj1j2...jmI +

2ν∑

q=1

A
s1s2...sq
i1i2...ikj1j2...jm

◦
γ s1s2...sq . (1.13)

According to definitions (1.11) and (1.12), for the coefficients A we have

Ai1i2...ikj1j2...jm = 1

2ν
tr
( ◦
γ i1i2...ik

◦
γ j1j2...jm

)
,

A
s1s2...sq
i1i2...ikj1j2...jm

= (−1)
1
2 q(q−1) 1

2ν
tr
( ◦
γ i1i2...ik

◦
γ j1j2...jm

◦
γ s1s2...sq

)
.

The coefficients A are sums of different products of the Kronecker deltas. A
direct calculation shows that Eq. (1.13) may be written in the form [75]

◦
γ i1i2...ik

◦
γ j1j2...jm

=
λ∑

p=θ

(−1)
1
2 p(2k−p−1) k !m !

p ! (k − p) ! (m − p) !δs1q1 · · · δspqp

× δ
s1[i1 · · · δspip δ

sp+1
ip+1

· · · δskik]δ
q1
[j1

· · · δqpjp δ
qp+1
jp+1

· · · δqmjm]
◦
γ sp+1...skqp+1...qm. (1.14)

Here,

λ = min(k,m),

θ =
{

0 if 1
2 (k + m − 2ν + 1) � 0,[

1
2 (k + m − 2ν + 1)

]
if 1

2 (k + m − 2ν + 1) > 0.

The brackets [ ] in the formula for θ here mean the integer part of the number
in the brackets. Summing in p in (1.14) is truncated if k + m − 2p > 2ν. To
simplify the expression (1.14), we have omitted the indices with zero number and

take
◦
γ s0

= ◦
γ q0

= I .
Let us note that the right-hand side of Eq. (1.14) contains the unit matrix only if

k = m.
In various calculations, it is also convenient to use another form of Eq. (1.14):

◦
γ i1i2...ik

◦
γ

j1j2...jm =
λ∑

p=θ

(−1)
1
2p(2k−p−1) k !m !

p ! (k − p) ! (m − p) !

× δ
[j1
[i1 · · · δjpip

◦
γ ip+1...ik]jp+1...jm]. (1.15)



6 1 Spinors in Finite-Dimensional Spaces

It has been denoted here

◦
γ ip+1...ik

jp+1...jm = ◦
γ ip+1...ikjp+1...jm

.

Let us present Eqs. (1.15) to be used below for different values of the numbers
k, m:

For m = 1:

◦
γ i

◦
γ j = ◦

γ ij + δij I,

◦
γ i1i2...ik

◦
γ j = ◦

γ i1i2...ikj
+ k(−1)k−1δj [i1

◦
γ i2...ik], k = 2, 3, , . . . , 2ν − 1,

◦
γ i1i2...i2ν

◦
γ j = −2νδj [i1

◦
γ i2...i2ν] . (1.16a)

For k = 1:

◦
γ j

◦
γ i1i2...im

= ◦
γ ji1i2...im

+ mδj [i1
◦
γ i2...im], m = 2, 3, , . . . , 2ν − 1,

◦
γ j

◦
γ i1i2...i2ν

= 2νδj [i1
◦
γ i2...i2ν] . (1.16b)

For m = 2 (k = 3, 4,. . . , 2ν − 2):

◦
γ i1

◦
γ j1j2 = ◦

γ i1
j1j2 + 2δ[j1

i1

◦
γ j2],

◦
γ i1i2

◦
γ j1j2 = ◦

γ i1i2
j1j2 + 4δ[j1

[i1
◦
γ j2]

i2] − 2δj1
[i1δ

j2
i2]I,

◦
γ i1i2...ik

◦
γ j1j2 = ◦

γ i1i2...ik
j1j2 + 2kδ[j1

[i1
◦
γ j2]

i2...ik ] − k(k − 1)δj1
[i1δ

j2
i2

◦
γ i3...ik],

◦
γ i1i2...i2ν−1

◦
γ j1j2 = 2(2ν − 1)δ[j1

[i1
◦
γ j2]

i2...i2ν−1]

− (2ν − 1)(2ν − 2)δj1
[i1δ

j2
i2

◦
γ i3...i2ν−1],

◦
γ i1i2...i2ν

◦
γ j1j2 = −2ν(2ν − 1)δj1

[i1δ
j2
i2

◦
γ i3...i2ν ]. (1.16c)

For k = 2 (m = 3, 4,. . . , 2ν − 2):

◦
γ i1i2

◦
γ j1 = ◦

γ i1i2
j1 − 2δj1

[i1
◦
γ i2],

◦
γ i1i2

◦
γ j1j2...jm = ◦

γ i1i2
j1j2...jm − 2mδ

[j1
[i1

◦
γ i2]j2...jm]

− m(m − 1)δ[j1
i1

δ
j2
i2

◦
γ j3...jm],

◦
γ i1i2

◦
γ j1j2...j2ν−1 = −2(2ν − 1)δ[j1

[i1
◦
γ i2]j2...i2ν−1]

− (2ν − 1)(2ν − 2)δ[j1
i1

δ
j2
i2

◦
γ j3...j2ν−1],

◦
γ i1i2

◦
γ j1j2...i2ν = −2ν(2ν − 1)δ[j1

i1
δ
j2
i2

◦
γ j3...j2ν ]. (1.16d)
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For m = 2ν (k = 1, 2,. . . , 2ν − 1):

◦
γ i1i2...i2ν

◦
γ j1j2...i2ν = (−1)ν(2ν) ! δ[j1

i1
δ
j2
i2

· · · δj2ν ]
i2ν

I, (1.16e)

◦
γ i1i2...ik

◦
γ j1j2...i2ν = (−1)

1
2 k(k−1) (2ν) !

(2ν − k) !δ
[j1
i1

δ
j2
i2

· · · δjkik
◦
γ jk+1...j2ν ].

For k = 2ν, m = 1, 2,. . . , 2ν − 1:

◦
γ i1i2...i2ν

◦
γ j1j2...im = (−1)

1
2 m(m+1) (2ν) !

(2ν − m) !δ
j1
[i1δ

j2
i2

· · · δjmim
◦
γ im+1...j2ν] . (1.16f)

7. The set of matrices consisting of the products of any matrix of system (1.8)
by each matrix (1.8) contains, up to the sign, all matrices (1.8).

Indeed, the non-degeneracy and linear independence of matrices (1.8) implies

that the system under consideration, consisting of products of
◦
γ matrices, is also

linearly independent and therefore contains 22ν matrices. From Eq. (1.15) (or,
simpler, directly from definition (1.2) and Eq. (1.1)) it follows that each of these
products represents (in any case, up to the sign) one of the matrices in (1.8).

8. Pauli’s Identity Let us denote elements of the matrix Ψ in Eq. (1.10) by the
symbol ψB

A and elements of the matrices
◦
γ i1i2...ik

and
◦
γ i1i2...ik by the symbols

◦
γ B

Ai1i2...ik and
◦
γ B

A
i1i2...ik , respectively:

Ψ = ‖ψB
A‖, ◦

γ i1i2...ik
= ‖ ◦

γ B
Ai1i2...ik‖, ◦

γ i1i2...ik = ‖ ◦
γ B

A
i1i2...ik‖,

where the first index B in the matrix elements in Ψ and
◦
γ denotes the row number,

while the second index A is the column number.
With these notations introduced, Eq. (1.10) may be written in the form

ψB
A = 1

2ν

(

FδBA +
2ν∑

k=1

1

k !F
i1i2...ik

◦
γ B

Ai1i2...ik

)

, (1.17)

while definitions (1.11) and (1.12) for the coefficients F and F i1i2...ik have the form

F = ψA
A,

F i1i2...ik = (−1)
1
2 k(k−1) ◦

γ B
A
i1i2...ikψA

B. (1.18)

Let us insert into (1.17) the coefficients F and F i1i2...ik according to defini-
tions (1.18):

[
− δCAδBD + 1

2ν

(
δCDδBA +

2ν∑

k=1

1

k ! (−1)
1
2 k(k−1) ◦

γ C
D

i1i2...ik
◦
γ B

Ai1i2...ik

)]
ψD

C = 0.
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From this equality, due to arbitrariness of the quantities ψD
C , we obtain the

following important identity connecting products of
◦
γ matrices:

δCAδBD = 1

2ν

(
δCDδBA +

2ν∑

k=1

1

k ! (−1)
1
2 k(k−1) ◦

γ C
D

i1i2...ik
◦
γ B

Ai1i2...ik

)
. (1.19)

Identity (1.19) for ν = 2 was obtained by Pauli [49] and is usually called Pauli’s
identity.

Let us multiply identity (1.19) by
◦
γM

Cj1j2...jm

◦
γ E

Bs1s2...sq and sum the result by
the indices B and C from 1 to 2ν:

◦
γM

Aj1j2...jm

◦
γ E

Ds1s2...sq = 1

2ν

[
◦
γM

Dj1j2...jm

◦
γ E

As1s2...sq

+
2ν∑

k=1

1

k ! (−1)
1
2 k(k−1)( ◦

γM
Cj1j2...jm

◦
γ C

D
i1i2...ik

)( ◦
γE

Bs1s2...sq

◦
γ B

Ai1i2...ik

)]
.

Changing here the products of matrices
◦
γ according to Eq. (1.13), we obtain

relationships expressing the products
◦
γM

A
◦
γE

D in terms of sums of different

products
◦
γM

D
◦
γ E

A with transposed spinor indices D, A3:

◦
γM

Aj1j2...jm

◦
γ E

Ds1s2...sq =
2ν∑

k=0

2ν∑

p=0

α
i1i2...ik l1l2...lp
j1j2...jms1s2...sq

◦
γM

Di1i2...ik

◦
γ E

Al1l2...lp .

(1.20)
Here, the coefficients α are determined by the equality

α
i1i2...ik l1l2...lp
j1j2...jms1s2...sq

=
2ν∑

r=0

(−1)
1
2 r(r−1)

2νr ! δt1n1δt2n2 · · · δtrnr

× A
i1i2...ik
j1j2...jmt1t2...tr

A
l1l2...lp
s1s2...sqn1n2...nr

.

9. Let us introduce the matrix
◦
γ 2ν+1:

◦
γ 2ν+1 = iν

◦
γ 1

◦
γ 2 · · · ◦

γ 2ν . (1.21)

3The full set of identities (1.20) for 4-dimensional pseudo-Euclidean space is presented in
Appendix C. These identities for 3-dimensional Euclidean space are presented in Chap. 4, see
page 205.
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Summing the last equations in (1.16a), (1.16b), we obtain

◦
γ j

◦
γ i1i2...i2ν

+ ◦
γ i1i2...i2ν

◦
γ j = 0.

Hence it follows that the matrix
◦
γ 2ν+1 anticommutes with all matrices

◦
γ j :

◦
γ j

◦
γ 2ν+1 + ◦

γ 2ν+1
◦
γ j = 0, j = 1, 2, . . . , 2ν.

The first equality in (1.16e) also implies that
◦
γ 2ν+1

◦
γ 2ν+1 = I . Therefore,

Eq. (1.1), defining the 2ν matrices
◦
γ j , also holds if we suppose that the indices

i, j take values from 1 to 2ν + 1,

◦
γ i

◦
γ j + ◦

γ j

◦
γ i = 2δij I, i, j = 1, 2, . . . , 2ν + 1.

The set of matrices with an even number of indices

I,
◦
γ i1i2

, · · · , ◦
γ i1i2...i2ν

(i1 < i2 < · · · < i2ν) (1.22)

and the set of matrices with an odd number of indices

◦
γ i,

◦
γ i1i2i3

, · · · , ◦
γ i1i2i3...i2ν+1

(i1 < i2 < · · · < i2ν+1), (1.23)

in which
◦
γ i1i2...ik

= ◦
γ [i1

◦
γ i2

· · · ◦
γ ik] and the indices ik take all integer values from 1

tp 2ν + 1, are linearly independent.
Linear independence of the set of matrices (1.22) and (1.23) is proved in a way

similar to the corresponding proof for the set of matrices (1.8) in item 5.
Evidently, the number of matrices in set (1.22) is equal to 22ν:

C0
2ν+1 + C2

2ν+1 + · · · + C2ν
2ν+1 = 22ν.

The number of matrices in set (1.23) is also equal to 22ν :

C1
2ν+1 + C3

2ν+1 + · · · + C2ν+1
2ν+1 = 22ν.

Therefore the set of matrices (1.22) and the set of matrices (1.23) form bases in the
full matrix algebra of the dimension 22ν .

Due to the completeness and linear independence of the set of matrices (1.22),
the elements of any square matrix ‖ψB

A‖ of order 2ν may be represented in the
form

ψB
A = 1

2ν

(

FδBA +
ν∑

k=1

1

(2k) !F
i1i2...i2k

◦
γ B

Ai1i2...i2k

)

. (1.24)
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For the coefficients F , F i1i2...i2k , calculations similar to those conducted in item 6,
lead to

F = ψA
A,

F i1i2...i2k = (−1)k
◦
γ B

A
i1i2...i2kψA

B.

Using the set of matrices (1.23), we can write for ψB
A:

ψB
A = 1

2ν

ν∑

k=0

1

(2k + 1) !F
i1i2...i2k+1

◦
γ B

Ai1i2...i2k+1 , (1.25)

where

F i1i2...i2k+1 = (−1)k
◦
γ B

A
i1i2...i2k+1ψA

B.

10. If the matrix A commutes with all matrices
◦
γ i ,

A
◦
γ i = ◦

γ iA,

then A is a multiple of the unit matrix A = λI , where λ is a certain, generally
complex, number.

To prove this, let us represent the matrix A in the form

A = aI +
2ν∑

k=1

ai1i2...ik
◦
γ i1i2...ik

, (1.26)

where the coefficients ai1i2...ik are antisymmetric in all indices. We have

◦
γ jA − A

◦
γ j =

2ν∑

k=1

ai1i2...ik
( ◦
γ j

◦
γ i1i2...ik

− ◦
γ i1i2...ik

◦
γ j

)
.

Here, substituting the differences of products of
◦
γ matrices by the formulae

◦
γ j

◦
γ i1

− ◦
γ i1

◦
γ j = 2

◦
γ ji1

,

◦
γ j

◦
γ i1i2...ik

− ◦
γ i1i2...ik

◦
γ j = [1 − (−1)k] ◦

γ ji1i2...ik
+ k[1 + (−1)k]δj [i1

◦
γ i2...ik],

k = 2, 3, . . . , 2ν − 1,

◦
γ j

◦
γ i1i2...i2ν

− ◦
γ i1i2...i2ν

◦
γ j = 4νδj [i1

◦
γ i2...i2ν ],
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which follow from relations (1.16a) and (1.16b), we obtain

◦
γ jA − A

◦
γ j = 2

ν−1∑

m=0

ai1i2...i2m+1
◦
γ ji1i2...i2m+1

+ 4
ν∑

m=1

ai1i2...i2mmδj [i1
◦
γ i2...i2m] = 0. (1.27)

The first sum in (1.27) contains only
◦
γ matrices with an even number of indices,

while the second one only those with an odd number of indices.
Due to linear independence of the set of matrices (1.8), it follows from Eq. (1.27)

that all coefficients ai1i2...ik are equal to zero. Thus only the term with the unit matrix
in the expansion (1.26) is different from zero.

11. If the matrices
◦
γ i satisfy Eq. (1.1) and T is an arbitrary nondegenerate matrix

of order 2ν , it is evident that the set of matrices

γ̃i = T −1 ◦
γ i T (1.28)

satisfies the equation

γ̃i γ̃j + γ̃j γ̃i = 2δij I.

It also turns out that any two sets of matrices
◦
γ i , γ̃i , satisfying Eq. (1.1), are

always connected by relation (1.28), in which the matrix T is determined up to
multiplication by an arbitrary nonzero complex number. This property of solutions
of Eq. (1.1) has been named Pauli’s theorem.

A simple proof of Pauli’s theorem consists in explicitly pointing out the matrix

T , corresponding to different sets of matrices
◦
γ i , γ̃i . If we denote matrices (1.8)

by the symbol
◦
γA (A = 1, 2,. . . , 22ν) and similar matrices formed from γ̃i by the

symbol γ̃A, then the matrix T may be written in the form

T =
22ν∑

A=1

◦
γAF γ̃−1

A , (1.29)

where F is some nonzero square matrix of order 2ν .

Indeed, let us calculate the quantity
◦
γ iT γ̃−1

i (without summing over the index i):

◦
γ iT γ̃−1

i =
22ν∑

A=1

◦
γ i

◦
γAF

(
γ̃i γ̃A

)−1
. (1.30)
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Since, according to property 7 of the matrices
◦
γA, the product

◦
γ i

◦
γA for all A

again gives all matrices
◦
γA (at least up to the sign), equality (1.30) can be continued:

◦
γ iT γ̃−1

i =
22ν∑

A=1

◦
γAF γ̃−1

A = T .

Hence it follows

◦
γ iT = T γ̃i . (1.31)

Obviously, one can always choose the matrix F in definition (1.29) in such a

way that T �= 0 (otherwise the set of matrices
◦
γA would be linearly dependent). Let

us show that, with the corresponding choice of F , the matrix T is nondegenerate,
detT �= 0.

Analogously to (1.29)–(1.31), one obtains that the matrix Q defined by the
equality

Q =
22ν∑

A=1

γ̃AG
◦
γ−1
A ,

in which G is some square matrix of order 2ν , satisfies the equation

γ̃iQ = Q
◦
γ i (1.32)

and, under the corresponding choice of G, is nonzero, Q �= 0. Multiplying
Eq. (1.32) by T from the right and taking into account Eq. (1.31), we find

γ̃iQT = QT γ̃i.

Therefore, the matrix QT is proportional to the unit matrix:

QT = αI. (1.33)

From linear independence of the set of matrices
◦
γA it follows that, for Q �= 0,

one can always choose F in such a way that the number α in Eq. (1.33) is nonzero,
α �= 0. Indeed, if for any matrix F we had α = 0, then Eq. (1.33) would imply

QT ≡
22ν∑

A=1

(
Q

◦
γAF

)
γ̃−1
A = 0,
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and, due to arbitrariness of F ,

22ν∑

A=1

(
Q

◦
γA

)× γ̃−1
A = 0. (1.34)

But since Q �= 0, all matrices Q
◦
γA cannot be equal to zero. Therefore

equality (1.34) contradicts the linear independence of the set of matrices
◦
γA. Thus

one can always choose the matrix F is such a way that α �= 0.
From Eq. (1.33) it follows that, for the corresponding choice of F , the matrix T

is nondegenerate, and there exists the inverse matrix T −1 = α−1Q. Therefore, from
equality (1.31) it follows (1.28), the equation to be proved.

It remains to show that the matrix T in Eq. (1.28) is determined up to multiplying
by an arbitrary nonzero number. Suppose that T̃ �= T satisfies the equation

γ̃i = T̃ −1 ◦
γ i T̃ . (1.35)

Then Eqs. (1.28) and (1.35) imply

T −1 ◦
γ i T = T̃ −1 ◦

γ iT̃ , or T̃ T −1 ◦
γ i = ◦

γ i T̃ T −1,

and therefore

T̃ T −1 = λI, λ �= 0,

so that T̃ differs from T by only a numerical factor: T̃ = λT , λ �= 0. The theorem
is proved.

Substituting the matrices
◦
γ i in Eq. (1.28) according to the formula

◦
γ i = − ◦

γ
−1
2ν+1

◦
γ i

◦
γ 2ν+1,

which follows from definition (1.21) of
◦
γ 2ν+1, we find that the connection between

◦
γ i and γ̃i may also be written in the form

γ̃i = − ∗
T −1 ◦

γ i

∗
T ,

where

∗
T = ◦

γ 2ν+1T .
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Let us now show that a solution of the matrix equations (1.1) for
◦
γ i does exist

for any ν � 1 and may be realized in the form of the Hermitian matrices

( ◦
γ i

)T = ( ◦
γ i

)
,̇ (1.36)

where one can choose the ν matrices
◦
γ 1,

◦
γ 2, . . . ,

◦
γ ν to be symmetric and the ν

matrices
◦
γ ν+1,

◦
γ ν+2, . . . ,

◦
γ 2ν to be antisymmetric:

( ◦
γ 1
)T = ◦

γ 1,
( ◦
γ 2
)T = ◦

γ 2, . . . ,
( ◦
γ ν

)T = ◦
γ ν,

( ◦
γ ν+1

)T = − ◦
γ ν+1,

( ◦
γ ν+2

)T = − ◦
γ ν+2, . . . ,

( ◦
γ 2ν

)T = − ◦
γ 2ν. (1.37)

In (1.36) and (1.37), the symbol “T ” means transposition and an overdot means
complex conjugation.

Let us prove the statement formulated.
For ν = 1, it is easy to point out a set of two second-order matrices satisfying

Eq. (1.1):

◦
γ 1 =

∥
∥
∥
∥

1 0
0 −1

∥
∥
∥
∥ ,

◦
γ 2 =

∥
∥
∥
∥

0 −i
i 0

∥
∥
∥
∥ . (1.38)

where i = √−1. Evidently, the matrices written are Hermitian, and
◦
γ 1 is symmetric,

while
◦
γ 2 is antisymmetric.

Assuming that there exists a solution of (1.1) for ν = α, satisfying the
conditions (1.36) and (1.37), let us show that there exists a solution of Eq. (1.1)
for ν = α + 1, and it satisfies the conditions (1.36) and (1.37).

Let
◦
γ 1,

◦
γ 2, . . . ,

◦
γ 2α be a set of 2α Hermitian matrices satisfying Eq. (1.1), in

which the indices i and j take values from 1 to 2α. We will assume that the matrices
◦
γ 1,

◦
γ 2, . . . ,

◦
γ α are symmetric and

◦
γ α+1,

◦
γ α+2, . . . ,

◦
γ 2α are antisymmetric. Let us

introduce the matrix

◦
γ 2α+1 = iα

◦
γ 1

◦
γ 2 · · · ◦

γ 2α. (1.39)

due to Eq. (1.1), the matrix
◦
γ 2α+1 anticommutes with all matrices

◦
γ i :

◦
γ i

◦
γ 2α+1 + ◦

γ 2α+1
◦
γ i = 0, i = 1, 2, . . . , 2α, (1.40)

and the square of the matrix
◦
γ 2α+1 is the unit matrix,

◦
γ 2α+1

◦
γ 2α+1 = I. (1.41)
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If the matrices
◦
γ i are Hermitian, then the matrix

◦
γ 2α+1 defined by equality (1.39)

is also Hermitian. Indeed, due to hermiticity of the matrices
◦
γ i (i = 1, 2,. . . , 2α),

one can write for the transposed matrix
◦
γ T

2α+1:

◦
γ T

2α+1 = iα
◦
γ T

2α . . .
◦
γ

T

2
◦
γ T

1 = iα
( ◦
γ 2α

)˙. . . ( ◦
γ 2
)˙( ◦
γ 1
)˙= iα

( ◦
γ 2α · · · ◦

γ 2
◦
γ 1
)
.̇ (1.42)

Since all matrices
◦
γ i in the product (1.39) are different, all of them anticommute

with each other according to Eq. (1.1). Permuting the matrices
◦
γ i in equality (1.42),

let us continue it:

◦
γ T

2α+1 = iα(−1)α(2α−1)( ◦
γ 1

◦
γ 2 · · · ◦

γ 2α
)˙= (

iα
◦
γ 1

◦
γ 2 · · · ◦

γ 2α
)
.̇

Thus
◦
γ T

2α+1 = ( ◦
γ 2α+1

)
.̇

Let us now find out the symmetry properties of the matrix
◦
γ 2α+1. We have

◦
γ T

2α+1 = iα
◦
γ T

2α . . .
◦
γ T

2
◦
γ T

1 = iα(−1)α
◦
γ 2α . . .

◦
γ 2

◦
γ 1.

Permuting here the anticommuting matrices
◦
γ i , we find:

◦
γ T

2α+1 = iα(−1)α(−1)α(2α−1) ◦
γ 1

◦
γ 2 · · · ◦

γ 2α = iα
◦
γ 1

◦
γ 2 · · · ◦

γ 2α.

Thus the matrix
◦
γ 2α+1 is symmetric

◦
γ T

2α+1 = ◦
γ 2α+1.

Consider the following set of 2(α + 1) matrices:

∥∥
∥
∥

0 I

I 0

∥∥
∥
∥ ,

∥
∥∥
∥
∥

0 −i
◦
γ j

i
◦
γ j 0

∥
∥∥
∥
∥
, j = 1, 2, . . . , 2α + 1. (1.43)

A direct inspection with the aid of Eqs. (1.40) and (1.41) shows that the set of
2(α + 1) matrices (1.43) satisfies Eq. (1.1) in which i, j = 1, 2,. . . , 2(α + 1).

Let us establish the symmetry properties of the set of matrices (1.43). Evidently,
the first matrix in (1.43) is Hermitian and symmetric. The other matrices in (1.43)
are also Hermitian:

∥
∥
∥
∥
∥

0 −i
◦
γ j

i
◦
γ j 0

∥
∥
∥
∥
∥

T

=
∥
∥
∥
∥
∥

0 i
◦
γ T

j

−i
◦
γ T

j 0

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

0 i
( ◦
γ j

)˙
−i
( ◦
γ j

)˙ 0

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

0
(− i

◦
γ j

)˙
(
i
◦
γ j

)˙ 0

∥
∥
∥
∥
∥
.

By virtue of the assumed symmetry properties of the matrices
◦
γ j (j = 1, 2,. . . ,

2α) and due to the symmetric nature of
◦
γ 2α+1, the matrices (1.43) for j = 1, 2,. . . ,



16 1 Spinors in Finite-Dimensional Spaces

α and for j = 2α + 1 are antisymmetric:

∥
∥∥
∥
∥

0 −i
◦
γ j

i
◦
γ j 0

∥
∥∥
∥
∥

T

=
∥
∥∥
∥
∥

0 i
◦
γ T

j

−i
◦
γ T

j 0

∥
∥∥
∥
∥

= −
∥
∥∥
∥
∥

0 −i
◦
γ j

i
◦
γ j 0

∥
∥∥
∥
∥
,

while for j = α + 1,. . . , 2α they are symmetric:

∥
∥
∥
∥
∥

0 −i
◦
γ j

i
◦
γ j 0

∥
∥
∥
∥
∥

T

=
∥
∥
∥
∥
∥

0 i
◦
γ T

j

−i
◦
γ T

j 0

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

0 −i
◦
γ j

i
◦
γ j 0

∥
∥
∥
∥
∥
.

We see that half of the matrices in (1.43) are symmetric and another half antisym-
metric. Thus matrices (1.43) satisfy Eq. (1.1) and possess the properties (1.36) and
(1.37). We have thus proved the previously formulated statement on the existence
of solutions of Eq. (1.1).

Since for ν = 1 the order of matrices (1.38) is two, and at transition from ν = α

to ν = α + 1 in the construction of the matrices
◦
γ j considered above their order is

doubled, it is evident that the order of the 2(α + 1) matrices (1.43) is equal to 2α+1.
It has been proved above that it is the minimal order of the matrices

◦
γ j satisfying

Eq. (1.1).

If
◦
γ i is a certain solution of Eq. (1.1), then, evidently, the matrices − ◦

γ T
i also

form a solution of Eq. (1.1):

(− ◦
γ T

i

)(− ◦
γ T

j

)+ (− ◦
γ T

j

)(− ◦
γ T

i

) = 2δij I.

It therefore follows from Pauli’s theorem that there exists a nondegenerate square
matrix E = ‖eBA‖, defined up to multiplying by an arbitrary nonzero complex
number, which satisfies the equation

◦
γ T

i = −E
◦
γ iE

−1. (1.44)

According to Pauli’s theorem, any two solutions of Eq. (1.1) are connected by the
similari ty transformation (1.28). Let us find out how does the matrix E, defined by

Eq. (1.44), change in a transition from the set of matrices
◦
γ i to the set of matrices

◦
γ i

′:

◦
γ i

′ = T −1 ◦
γ i T . (1.45)

Let E′ be defined by the equation

( ◦
γ i

′)T = −E′ ◦
γ i

′(E′)−1
. (1.46)
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Substituting, in definition (1.46), the matrices
◦
γ i

′ in terms of
◦
γ i by formula (1.45)

and multiplying the resulting equality from the left by (T −1)T and from the right by
T T , we obtain

◦
γ T

i = −(T T
)−1

E′T −1 ◦
γ iT

(
E′)−1

T T . (1.47)

Comparing Eqs. (1.44) and (1.47), we find:

◦
γ iE

−1(T T
)−1

E′T −1 = E−1(T T
)−1

E′T −1 ◦
γ i.

Hence, due to the properties of
◦
γ matrices formulated in item 10, it follows:

E−1(T T
)−1

E′T −1 = λI,

where λ is some nonzero complex number. Evidently, without loss of generality,
one can put λ = 1 (by redefinition T → T λ−1/2 leaving Eq. (1.45) unchanged), and
then

E′ = T T ET . (1.48)

Thus if the matrices
◦
γ i

′ and
◦
γ i are connected by a similarity transforma-

tion (1.45), then the corresponding matrices E and E′ are connected by equal-
ity (1.48).

Let us transpose equation (1.44) and multiply the result from the right by (ET )−1

and from the left by ET . We obtain:

◦
γ T

i = −ET ◦
γ i

(
ET

)−1
. (1.49)

Comparing Eqs. (1.49) and (1.44), we find:

E
◦
γ iE

−1 = ET ◦
γ i

(
ET

)−1
.

From the latter equation it follows that the matrix E−1ET commutes with all
◦
γ i :

E−1ET ◦
γ i = ◦

γ iE
−1ET

and is therefore proportional to the unit matrix, E−1ET = ρI , or

ET = ρE, (1.50)

where ρ �= 0. Transposing equation (1.50), we find:

ET = 1

ρ
E.
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Thus ρ = 1/ρ and consequently ρ = ±1. It means that the matrix E defined by
Eq. (1.44) is either symmetric or antisymmetric, ET = ±E.

If one takes the matrices
◦
γ 1,

◦
γ 2, . . . ,

◦
γ ν to be symmetric and

◦
γ ν+1,

◦
γ ν+2, . . . ,

◦
γ 2ν to be antisymmetric, it is easily seen that one can take for E the matrix

E = λ
◦
γ 1

◦
γ 2 · · · ◦

γ ν (1.51)

if ν is even and the matrix

E = λ
◦
γ ν+1

◦
γ ν+2 · · · ◦

γ 2ν (1.52)

if ν is odd. Here λ �= 0 is an arbitrary complex number.

Taking into account the symmetry properties of the matrices
◦
γ i in Eqs. (1.51)

and (1.52) for E, it is easy to find that the matrix E is symmetric if the number
1
2ν(ν + 1) is even and is antisymmetric if the number 1

2ν(ν + 1) is odd:

ET = (−1)
1
2 ν(ν+1)E. (1.53)

For example, in the case of an even ν, with definition (1.51) we have

ET = λ
◦
γ T

ν · · · ◦
γ T

2
◦
γ T

1 = λ
◦
γ ν · · · ◦

γ 2
◦
γ 1 = λ(−1)

1
2 ν(ν−1) ◦

γ 1
◦
γ 2 · · · ◦

γ ν

= (−1)
1
2 ν(ν−1)E = (−1)

1
2 ν(ν+1)E.

Using Eq. (1.44), let us calculate the result of transposition of a product of
arbitrary

◦
γ matrices. We have

( ◦
γ i1

◦
γ i2

· · · ◦
γ ik

)T = ◦
γ T

ik
· · · ◦

γ T
i2

◦
γ T

i1
= (−1)kE

◦
γ ik

· · · ◦
γ i2

◦
γ i1

E−1.

Performing, in this equality, alternation over the indices i and permuting the indices
ik,. . . , i2, i1 in its right-hand side to the order of growing numbers, we obtain:

( ◦
γ i1i2...ik

)T = (−1)
1
2 k(k+1)E

◦
γ i1i2...ik

E−1. (1.54)

Taking into account the symmetry properties (1.53) of the matrix E, we can
rewrite equality (1.54) in the form

(
E

◦
γ i1i2...ik

)T = (−1)
1
2 [ν(ν+1)+k(k+1)]E ◦

γ i1i2...ik
. (1.55)

Evidently, the symmetry properties (1.53) and (1.55) are of invariant nature and are

not related to a specific choice of the matrices
◦
γ i .
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Denoting the matrix elements of E
◦
γ i1i2...ik

by the symbol
◦
γBAi1i2...ik

, so that

◦
γ BAi1i2...ik

= eBC
◦
γ C

Ai1i2...ik ,

we can also write the symmetry properties (1.53) and (1.55) in the following way:

eBA = (−1)
1
2 ν(ν+1)eAB,

◦
γ BAi1i2...ik

= (−1)
1
2 [ν(ν+1)+k(k+1)] ◦

γ ABi1i2...ik
. (1.56)

1.2 Spinor Representation of the Orthogonal Group
of Transformations of Bases of an Even-Dimensional
Complex Euclidean Vector Space

1.2.1 Spinor Representation SO+
2ν

→ {±S} of the Proper
Orthogonal Group

Consider an even-dimensional complex Euclidean vector space E+
2ν of dimension

2ν, referred to an orthonormal basis Эi (i = 1, 2,. . . , 2ν). Let SO+
2ν be the group of

proper orthogonal transformations of the bases Эi of the space E+
2ν

Э′
i = lj iЭj , (1.57)

defined by the equations

lq i l
m
j δqm = δij , det ‖lj i‖ = 1. (1.58)

If the matrices
◦
γ i satisfy Eq. (1.1), then it follows from the orthogonality

condition (1.58) that the matrices
◦
γ ′

i = lj i
◦
γ j also satisfy Eq. (1.1). Indeed,

◦
γ ′

i

◦
γ ′

j + ◦
γ ′

j

◦
γ ′

i = lq i l
m
j

( ◦
γ q

◦
γm + ◦

γm

◦
γ q

) = 2lq i lmj δqmI = 2δij I.

Therefore Pauli’s theorem implies that there is a matrix4 S = ‖SB
A‖, determined up

to multiplying by an arbitrary nonzero complex number and satisfying the equation

lj i
◦
γ j = S−1 ◦

γ iS. (1.59)

4S is a square matrix of order 2ν with the elements SB
A. To simplify the subsequent expressions,

as is conventionally done, we will mostly use matrix notations and omit the indices that determine
the matrix elements.
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Transposing equation (1.59) and, in the resulting equation, substituting the matrices
◦
γ T

i according to Eq. (1.44), we find:

lj i
◦
γ j = E−1ST E

◦
γ i

(
E−1ST E

)−1
.

Comparing this equation with (1.59), we obtain

◦
γ iSE

−1ST E = SE−1ST E
◦
γ i.

Thus the matrix SE−1ST E commutes with all
◦
γ i and is therefore proportional

to of the unit matrix,

SE−1ST E = λI.

Here, λ is a nonzero complex number. The latter equation may also be written in the
form ST ES = λE.

Since S is determined by Eq. (1.59) up to multiplying by an arbitrary complex
number, we can normalize S by the condition

ST ES = E (1.60)

and then obtain that Eq. (1.59), under the normalization condition (1.60), puts into
correspondence to each proper orthogonal transformation lj i two matrices: S and
−S.

Let us identify the transformations S and −S and let us consider the pair of
transformations S and −S as a single element ±S. On the set of pairs ±S, let us
define a product by the equality

(±S1)(±S2)
def= ±(S1S2), (1.61)

where S1S2 is the conventional matrix product of the matrices S1 and S2.5

In a natural way, one also defines a product of matrices T (not necessarily square
ones) and pairs of matrices {±S}:

T (±S)
def= ±(T S), (±S)T

def= ±(ST ).

It is easily seen that the set {±S}, corresponding to the proper orthogonal
group SO+

2ν , is a group with respect to the multiplication (1.61). Let us show
that the group {±S} realizes a representation of the group of proper orthogonal

5Evidently, if the set of certain square matrices {S} forms a group, then the corresponding set
{±S} also forms a group with respect to the multiplication (1.61) (which is simply the factor group
S/ ± I ).
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transformations SO+
2ν . To do so, it is sufficient to show that a product of proper

orthogonal transformations from SO+
2ν is in correspondence with a product of pairs

±S.
Let the proper orthogonal transformation Э′

i = l
j
1iЭj correspond to the pair

±S1, the proper orthogonal transformation Э′′
k = li2kЭ

′
i to the pair ±S2, and the

product transformation Э′′
k = l

j

1i l
i
2kЭj to the pair ±S. Thus we have

l
j

1i
◦
γ j = S−1

1
◦
γ iS1, ST

1 ES1 = E,

li2k
◦
γ i = S−1

2
◦
γ kS2, ST

2 ES2 = E,

l
j

1i l
i
2k

◦
γ j = S−1 ◦

γ kS, ST ES = E. (1.62)

Let us contract the first equality in (1.62) with li2k over the index i and, in the right-

hand side of the resulting equality, substitute the contraction li2k
◦
γ i according to the

second equality (1.62). We obtain:

l
j

1i l
i
2k

◦
γ j = li2kS

−1
1

◦
γ iS1 = S−1

1 S−1
2

◦
γ kS2S1 = (S2S1)

−1 ◦
γ k(S2S1). (1.63)

Comparing (1.63) with the third equality in (1.62), we find

(S2S1)
−1 ◦

γ k(S2S1) = S−1 ◦
γ kS,

or

S(S2S1)
−1 ◦

γ k = ◦
γ kS(S2S1)

−1.

Thus the matrix S(S2S1)
−1 commutes with all matrices

◦
γ k and is therefore

proportional to the unit matrix,

S(S2S1)
−1 = λI, or S = λS2S1. (1.64)

Using equality (1.64) and the normalization conditions for S1 and S2 in (1.62),
we calculate the quantity ST ES:

ST ES = (λS2S1)
T EλS2S1 = λ2ST

1 (ST
2 ES2)S1 = λ2ST

1 ES1 = λ2E. (1.65)

Comparing Eq. (1.65) with the normalization condition for S in (1.62), we find
λ2 = 1. It means that λ = 1 or λ = −1 and S = S2S1 or S = −S2S1. Therefore the
product lj1i l

i
2k in the proper orthogonal group SO+

2ν is in correspondence with the
product ±S = (±S2)(±S1) on the set {±S}.

Thus the normalized set {±S}, consisting of the pairs ±S corresponding to the
proper orthogonal group SO+

2ν , forms a group (1.61) which realizes a representation
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of the group SO+
2ν , called the spinor representation. The group {±S} will be further

called the group of spinor transformations.
Let us calculate the matrix S corresponding to small proper orthogonal transfor-

mations lj i . We write a small proper orthogonal transformation lj i in the form

lj i = δ
j
i + δεi

j , (1.66)

where δεi
j are small quantities. The orthogonality condition (1.58) for the quantities

δεij = δεi
j gives δεij = −δεji .

Expanding the matrix S in powers of δεij and restricting ourselves to first-order
small quantities, we find

S = I + 1

2
Aij δεij , Aij = −Aji. (1.67)

The quantities Aij in Eq. (1.67), which are matrices of the order 2ν , are called
the infinitesimal operators (or generators) of the spinor representation. Inserting
expressions (1.66) and (1.67) for S and lj i into Eqs. (1.59) and (1.60), we arrive
at equations for determining the infinitesimal operators:

(
Aij

)T = −EAijE−1, Aij = −Aji,

−Aij ◦
γ k + ◦

γ kAij + δkj
◦
γ i − δki

◦
γ j = 0,

which have the solution

Aij = 1

2
◦
γ ij . (1.68)

Thus the matrix S, corresponding to the small proper orthogonal transfor-
mations (1.66), has the form

S = I + 1

4
◦
γ ij δεij . (1.69)

1.2.2 Spinor Representation of the Full Orthogonal Group

Consider the full orthogonal group O+
2ν of transformations Э′

i = lj iЭj of the bases
Эi of the space E+

2ν , defined by the equations

lq i l
m
j δqm = δij .
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There are several different, mutually non-equivalent representations of the full
orthogonal group of transformations O+

2ν which coincide with the above-defined
spinor representation on the subgroup of proper orthogonal transformations SO+

2ν .
1. A spinor representation of the O+

2ν group may be defined using the same
equations as those for the group SO+

2ν :

lj i
◦
γ j = S−1 ◦

γ iS, E = ST ES. (1.70)

It is easy to see that the first equation (1.70) implies

lj1
i1 l

j2
i2 · · · ljm im

◦
γ j1

◦
γ j2

· · · ◦
γ jm

= S−1 ◦
γ i1

◦
γ i2

· · · ◦
γ im

S. (1.71)

Hence it follows for m = 2ν:

◦
γ 2ν+1 = S−1 ◦

γ 2ν+1SΔ, Δ = det ‖lj i‖. (1.72)

Let us calculate the spinor transformation S that corresponds to the reflection
transformation

Э′
1 = −Э1, Э′

α = Эα, α = 2, 3, . . . , 2ν. (1.73)

According to Eqs. (1.70), we have

ST ES = E, S
◦
γ 1 = − ◦

γ 1S, S
◦
γ α = ◦

γ αS.

This enables us to find the solution for S

S = iν+1 ◦
γ 1

◦
γ 2ν+1. (1.74)

2. A spinor representation of the O+
2ν group may be defined by the equations

lj i
◦
γ j = S−1 ◦

γ iS, E = ST ESΔ. (1.75)

In this case, Eq. (1.72) also holds, and using it, we find for the spinor representation
considered:

ST E
◦
γ 2ν+1S = ST ESS−1 ◦

γ 2ν+1S = E
◦
γ 2ν+1.

Therefore, instead of the second equation (1.75) which normalizes the spinor
transformations, we can take the equation

E
◦
γ 2ν+1 = ST E

◦
γ 2ν+1S.
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The reflection transformation (1.73) correspond to a spinor transformation of the
form

S = iν
◦
γ 1

◦
γ 2ν+1.

3. A spinor representation of the O+
2ν group may also be defined by equations of

the form

lj i
◦
γ j = S−1 ◦

γ iSΔ, E = ST ES. (1.76)

A calculation of the spinor transformation matrix S, corresponding to the
reflection transformation (1.73), gives S = i

◦
γ 1.

The spinor representation under consideration is equivalent to the spinor rep-
resentation defined by Eqs. (1.70) for odd ν and to that defined by Eqs. (1.75) for
even ν. Indeed, a direct inspection shows that the spinor transformations ASA−1,

where A = I + i
◦
γ 2ν+1 and S is defined by Eqs. (1.76), coincide with the spinor

transformations defined by Eqs. (1.70) for odd ν and with the spinor transformations
defined by Eqs. (1.75) for even ν.

4. One can also define a spinor representation of the O+
2ν group by the following

equation:

lj i
◦
γ j = S−1 ◦

γ iSΔ, E = ST ESΔ. (1.77)

The second equation (1.77) is equivalent to the equation

E
◦
γ 2ν+1 = ST E

◦
γ 2ν+1S.

Under the reflection transformation (1.73), for the corresponding spinor transforma-

tion we have S = ◦
γ 1.

The spinor representation O+
2ν → {±S}, defined according to Eqs. (1.77), is

equivalent to a spinor representation defined by Eqs. (1.70) for even ν and to
that defined by a spinor representation defined by Eqs. (1.75) for odd ν, since
the spinor transformations ASA−1, where A = I + i

◦
γ 2ν+1, coincide with the

spinor transformations defined by Eqs. (1.70) or (1.75) depending on parity of the
number ν.

Each pair of Eqs. (1.70), (1.75), (1.76) and (1.77) completely defines a certain
group {±S} which realizes a representation of the full group of orthogonal
transformations of the bases Эi of the complex Euclidean space E+

2ν . Evidently,
all definitions (1.70), (1.75), (1.76) and (1.77) are identical for the group of proper
orthogonal transformations SO+

2ν and coincide with definition (1.59), (1.60). For
the full orthogonal group O+

2ν , the spinor representations defined by Eqs. (1.76) and
(1.77), are equivalent to the representations defined by Eqs. (1.70) and (1.75).
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Using the property of the
◦
γ i matrices, formulated in item 10 of Sect. 1.1, it is not

difficult to show that all spinor representations of the orthogonal group O+
2ν defined

above are exact, i.e., there is a one-to-one correspondence between the O+
2ν group

and the spinor groups {±S}.

1.2.3 Connection Between Spinor Representations Determined
by Different Sets of Matrices E and γ i

Equations (1.70) or (1.75), (1.76) and (1.77) completely determine the spinor group

{±S} if the matrices E and
◦
γ i , entering into these equations, are specified. As has

been already noted in Sect. 1.1, arbitrary sets of matrices E,
◦
γ i and E′, ◦

γ ′
i , satisfying

Eqs. (1.1) and (1.44), are connected by the relations

◦
γ ′

i = T −1 ◦
γ i T , E′ = T T ET, (1.78)

where T is some nondegenerate matrix. The spinor group {±S′}, corresponding

to the matrices E′ and
◦
γ i

′, is defined by the equations (for definiteness, we are
using Eqs. (1.70); for the spinor representations defined by Eqs. (1.75)–(1.77), the
subsequent transformations are entirely similar)

lj i
◦
γ ′

j = (S′)−1 ◦
γ ′
iS

′, (S′)T E′S′ = E′. (1.79)

Let us find out a connection between the groups {±S} and {±S′}. To do so, we
replace, in Eq. (1.79), the matrices E′ and

◦
γ ′

i with E and
◦
γ i using (1.78). We obtain:

lj i
◦
γ j = T (S′)−1T −1 ◦

γ iT S′T −1. (1.80)

Comparing Eq. (1.80) with the first equation (1.70), we find

T (S′)−1T −1 ◦
γ iT S′T −1 = S−1 ◦

γ iS,

or

ST (S′)−1T −1 ◦
γ i = ◦

γ iST (S′)−1T −1.

Hence it follows

ST (S′)−1T −1 = μI,
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where μ �= 0 is some, generally complex, number. The latter equation leads to a
connection between the spinor transformations S and S′:

S′ = μ−1T −1ST . (1.81)

To determine the number μ, we insert E′ and S′, defined according to (1.78)
and (1.81), into the second equation (1.79). After an identical transformation, we
find

μ−2ST ES = E. (1.82)

Comparing Eqs. (1.82) and (1.70), we find μ2 = 1, and consequently μ = 1 or
μ = −1. So the spinor groups {±S} and {±S′}, corresponding to different sets of
matrices E and

◦
γ i , are connected by the similarity transformation

± S′ = T −1(±S)T , (1.83)

and thus realize equivalent representations of the full orthogonal group O+
2ν .

1.3 Spinors in Even-Dimensional Complex Euclidean Spaces

Let SN be a complex linear (vector) space of dimension N , and let {εA} be a vector
basis of the space SN . Consider in SN an arbitrary vector ψAεA and the vector
−ψAεA, determined, in the basis {εA}, by componentsψA and −ψA, respectively.
Let us identify the vectors ψAεA and −ψAεA, and let us consider the pair of
vectors ψAεA and −ψAεA as a single object ψ = ±ψAεA in the space SN .6

Let us also identify the bases {εA} and −{εA} of the space SN and the systems of
components ψA and −ψA, and let us consider the pairs of bases {εA} and −{εA}
as a single element ±{εA}; the pair of systems of components ψA and −ψA will
be considered as a single element ±ψA. To each pair of bases ±{εA} and to each
pair of systems of components ±ψA, we put into one-to-one correspondence the
pair of vectors ψ = ±ψAεA of the space SN .

Consider now a certain group of linear transformations S = ‖SBA‖ of bases
{εA} of the vector space SN , and let {±S} be a group which consists of pairs of
transformations S and −S. On the set of pairs of bases ±{εA} in SN and on the set
of pairs of systems of components ±ψA, we define, with the aid of the group {±S},

6Geometrically, such an object determines a non-oriented segment in SN .
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the transformations ±{εA} → ±{ε′
A} and ±ψA → ±ψ ′A by the equalities

± ψ ′A = (± SAB
)(± ψB) def= ±(SABψB),

± {ε′
A} = (± ZBA

)(± εB
) def= ±{ZBAεB},

where ‖ZBA‖ = S−1.
Evidently, under such a transformation, the pairs of vectors ±ψAεA, corre-

sponding to the pairs ±ψA and ±{εA}, are invariant:

ψ = ±ψAεA = ±ψ ′Aε′
A.

Consider the case that the dimension N of the space SN is equal to 2ν and the
group {±S} is a spinor group that realizes representations of the orthogonal group
of transformations of bases of the space E+

2ν . Let us put into correspondence to a
certain orthonormal basis Эi of the Euclidean space E+

2ν , a pair of bases ±{εA}
of the space S2ν , and to each orthonormal basis Э′

i of the space E+
2ν , obtained

from Эi by the orthogonal transformation lj i according to (1.57), let us put into
correspondence a pair of bases ±{ε′

A} of the space S2ν , obtained from ±{εA} by the
transformation

± {
ε′
A

} = ±{ZB
AεB

}
, (1.84)

where the matrix ‖ZB
A‖ = S−1 is defined by equalities (1.70) or (1.75), (1.76),

and (1.77).
Since different transformations lj i correspond to different transformations

±S, the established correspondence is a one-to-one correspondence between all
orthonormal bases Эi of the space E+

2ν and a certain set of pairs of bases ±{ε′
A}

of the space S2ν . By the correspondence established between the spaces E+
2ν and

S2ν , under the orthogonal transformation (1.57) of the bases Эi in E+
2ν , the pairs of

bases ±{εA} in S2ν are subject to the transformation S−1 according to Eq. (1.84).
Having established the above correspondence between the spaces E+

2ν and S2ν ,
we can consider the object ψ = ±ψAεA as an invariant geometric object in the
Euclidean space E+

2ν , and then the transformation Э′
i = lj iЭj of a basis in E+

2ν
corresponds to the following transformation of components ±ψA:

± ψ ′A = ±SA
Bψ

B, (1.85)

where the matrix S = ‖SB
A‖ is defined by one of equalities (1.70), (1.75), (1.76)

and (1.77).
The invariant geometric object ψ = ±ψAεA, in which the pairs of contravariant

components ±ψA and the pairs of bases ±{εA} (A = 1, 2,. . . , 2ν) are referred
to a certain orthonormal basis Эi in the Euclidean space E+

2ν and are transformed
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under the orthogonal transformation (1.57) of the bases Эi according to formu-
lae (1.84), (1.85), is called a first-rank spinor in the complex Euclidean space E+

2ν .
The bases ±{εA} are usually called spinbases.

We will say that components ψA determine (or represent) the spinor in the
spinbasis ±{εA}. According to the definitions, components ψA and components
−ψA, related to the same spinbasis ±{εA}, determine the same spinor ψ .

By definition, the covariant components of the spinor ψB are given by the
equality

ψB = eBAψ
A, (1.86)

in which eBA are the components of the matrix E defined by Eq. (1.44). Let us
denote the components of the inverse matrix E−1 by eBC . Then,

eBAe
AC = δCB . (1.87)

From Eqs. (1.86) and (1.87) it follows

ψA = eABψB. (1.88)

Let us denote the column of components ψA (A = 1, 2,. . . , 2ν) by the symbol ψ
and the row of covariant components ψA by the symbol ψ̃ . Then definition (1.86)
may be written in a matrix form:

ψ̃ = (Eψ)T = ψT ET = (−1)
1
2 ν(ν+1)ψT E.

By definition, the covariant components of the spinor ±ψB are transformed,
under the transformation (1.57) of the basis Эi , with the aid of the inverse matrix
S−1 = ‖ZB

A‖:

±ψ ′
B = ±ZA

BψA.

In a matrix form, the transformation laws for the contravariant and covariant
components of a spinor are written as follows:

±ψ ′ = ±Sψ, ±ψ̃ ′ = ±ψ̃S−1.

The components of a spinor of rank m + n with m contravariant indices and n

covariant indices ψ
A1A2...Am

B1B2...Bn
(Ai , Bi = 1, 2,. . . , 2ν), under transformation (1.57) of

the basis Эi in the space E+
2ν , are transformed as a product of the components of a

first-rank spinor:

(
ψ

A1A2...Am

B1B2...Bn

)′ = SA1
D1S

A2
D2 · · · SAm

DmZ
C1

B1Z
C2

B2 · · ·ZCn
Bnψ

D1D2...Dm

C1C2...Cn
.
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According to the definition, the components of odd-rank spinors are defined in an
orthonormal basis Эi in E+

2ν up to a common sign, while the components of even-
rank spinors are defined uniquely. A transformation of the components of even-rank
spinors may be defined uniquely if the identical transformation of the basis Э′

i = Эi

in the space E+
2ν is put into correspondence to an identical transformation of the

spinor components, and for nearby transformations of bases in E+
2ν the sign of even-

rank spinor components is defined by continuity.
Let us define the operations of multiplication and contraction of spinors in the

spinor space.
We will call a product of two spinors with components ψ

A1...Am

B1...Bn
and ξ

C1...Ck

D1...Dr
,

referred to the same basis Эi , a spinor determined, in the same basis, by the
components

η
A1...AmC1...Ck

B1...BnD1...Dr
= ψ

A1...Am

B1...Bn
ξ
C1...Ck

D1...Dr
.

Thus the rank of a product of two spinor is equal to a sum of ranks of the factor
spinors. It is easy to show that this definition of a product of spinors is independent
of the chosen basis Эi .

This definition of the product of spinors is unambiguous if ψ and ξ are even-rank
spinors or if the ranks of the spinors ψ and ξ have opposite parity.

If ψ and ξ are odd-rank spinors, the above definition puts into correspondence
to the two spinors ψ and ξ two even-rank spinors which differ by their signs.
The choice of one of these even-rank spinors as a product of odd-rank spinors is
equivalent to a choice of the relative sign of the odd-rank spinor components.

A spinor with components

ψA3...Am = eA2A1ψ
A1A2A3...Am = ψA

AA3...Am,

or

ψA3...Am = eA1A2ψ
A1A2A3...Am = ψA

A
A3...AM ,

referred to the same basis as ψA1A2A3...Am , is called a contraction of the spinor with
components ψA1A2A3...Am with respect to the indices A1 and A2.

Evidently, if m is even and the components of the spinor eA1A2 are antisymmetric,
then the components ψA

AA3...Am and ψA
A
A3...AM determine two even-rank spinors

which differ by sign. If m is odd, then the components ψA
AA3...Am and ψA

A
A3...AM

determine the same spinor, since odd-rank spinor components are defined up to a
common sign.

A contraction over covariant indices is performed using the components eBA:

ψB3...Bn = eB2B1ψB1B2B3...Bn = ψB
BB3...Bn
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or

ψB3...Bn = eB1B2ψB1B2B3...Bn = ψB
B
B3...Bn .

Objects having components with both spinor and tensor indices will be called
spintensors.

Consider a spintensor the components
◦
γ i = ‖ ◦

γ B
Ai‖ in an orthonormal basis Эi

of the space E+
2ν . In the basis Э′

i = lj iЭj , its component have the form

◦
γ i

′ = lj iS
◦
γ jS

−1. (1.89)

It is easy to see that definitions (1.70) and (1.75) imply

lj iS
◦
γ jS

−1 = ◦
γ i . (1.90)

Comparing equalities (1.89) and (1.90), we find
◦
γ i

′ = ◦
γ i . Thus the values of

the transformed components of the spintensor
( ◦
γ B

Ai

)′
in the basis Э′

i coincide

with those of the components of the spintensor
◦
γ B

Ai in the basis Эi . Therefore,
for spinor representations defined by Eqs. (1.70) and (1.75), the components of
◦
γ B

Ai may be considered as those of a spintensor with one covariant tensor index,
one covariant spinor index and one contravariant spinor index, which is invariant
under the transformations (1.57). In the same way one obtains that, for spinor

representations defined by Eqs. (1.76) and (1.77), the equality
◦
γ i

′ = Δ
◦
γ i is valid,

and it implies that in this case
◦
γ i are invariant under continuous transformations of

Эi and change their sign under reflection transformations.
From Eq. (1.72) (which holds for all spinor representations considered above)

it follows that the spintensor defined by the matrix
◦
γ 2ν+1 = ‖( ◦

γ 2ν+1)
B
A‖ is

invariant under continuous transformations of the basis Эi and changes its sign
under reflection transformations,

◦
γ ′

2ν+1 = S
◦
γ 2ν+1S

−1 = ◦
γ 2ν+1Δ. (1.91)

In the same way, from the normalization condition in definitions (1.70)
and (1.76) it follows that the components of E = ‖eBA‖ (E−1 = ‖eBA‖)
are covariant (contravariant) components of a second-rank spinor, invariant under
transformations (1.57):

E′ = (S−1)T ES−1 = E.

For spinor representations defined by Eqs. (1.75) or (1.77), the components of E
are invariant under only continuous transformations (1.57), while under reflection
transformations they change their sign; in this case, the components of the second-
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rank spinor E
◦
γ 2ν+1 are invariant under all transformations (1.57):

E′ = (S−1)T ES−1 = EΔ,

(E
◦
γ 2ν+1)

′ = (S−1)T E
◦
γ 2ν+1S

−1 = E
◦
γ 2ν+1.

With the aid of the components of the invariant spinor E, the indices of
the components of spinors of any rank are raised and lowered (juggled) by the
scheme (1.86) and (1.88). Therefore the second-rank spinor E is called the metric
spinor.7 Let us notice that the contraction in Eqs. (1.86) and (1.88) is performed
over the second index of eBA and eBA (which is significant for second-rank spinors
if eBA = −eAB).

The index juggling operation in the components of spinors in the spaces E+
2ν

for odd 1
2ν(ν + 1) is essentially different from tensor index juggling since, for odd

1
2ν(ν + 1) (in particular, in the two- and four-dimensional spaces E+

2 and E+
4 ), the

components of the metric spinor eBA are, according to (1.53), antisymmetric. This
brings certain peculiarity to the spinor transformation formalism. In particular, for
odd 1

2ν(ν + 1), it is necessary to take into account the equality

ψAχA = −ψAχ
A, (1.92)

which follows from the antisymmetric nature of the metric spinor eBA. In the same
case, the following equality holds:

eBAeCDeAD = −eBC, (1.93)

which does not hold for the components of the tensor gij = (
Эi ,Эj

)
used for index

juggling in tensor components.
If, in the spinbasis ±{εA}, the spinor components transformation corresponding

to an orthogonal transformation of a basis Эi is determined by the matrix S,
then, in the spinbasis ±{̃εA} = ±{T B

AεB}, the spinor components transformation
that corresponds to the same orthogonal transformation of the basis Эi , will be
determined by the matrices S̃ = T −1ST , T = ‖T B

A‖. But, as has been shown
(see Eq. (1.83)), if the group of spinor transformations {±S} is associated with the

matrices of the spintensors E and
◦
γ i , then the group {±T −1ST } is associated with

the matrices of the spintensors Ẽ = T T ET , γ̃i = T −1 ◦
γ iT . Thus the choice of

7One could evidently take as a metric spinor the second-rank spinor with covariant components,

defined by the matrix E
◦
γ 2ν+1. If one requires that the metric spinor should be invariant under all

transformations of the basis in the Euclidean space E+
2ν , then, for spinor representations defined

by Eqs. (1.70) and (1.76), one should take the spinor E as a metric spinor, while for spinor

representations defined by Eqs. (1.75) and (1.77), the spinor E
◦
γ 2ν+1 should be taken.
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a certain set of spintensors E,
◦
γ i corresponds to the choice of a certain spinbasis

±{εA} and a certain group of spinor transformations {±S}. Therefore one can say
that a spinor in the space E+

2ν is determined by specifying the components ±ψA

referred to a certain orthonormal basis Эi in E+
2ν and by specifying the invariant

spintensors E and
◦
γ i which determine the spinor transformations ±S and the

spinbases ±{εA}.
Let us note that specifying only the invariant spintensors

◦
γ i determines the

spinbasis ±{εA} up to multiplying εA by an arbitrary nonzero complex number.
Indeed, assuming that, in the two different spinbases ±{εA} and ±{ε′

A}, the

spintensors
◦
γ i are the same, we find by writing the transformation of the spintensors

◦
γ i in a transition from the spinbasis ±{εA} to the spinbasis ±{ε′

A}:

S
◦
γ iS

−1 = ◦
γ i.

From this it follows, by virtue of the properties of the matrices
◦
γ i considered in item

10 of Sect. 1.1, that the transformation S is proportional to the unit matrix, S = λI ,
where λ is an arbitrary nonzero complex number.

1.4 Connection Between Even-Rank Spinors and Tensors

It is easily seen that, while in Eqs. (1.17) and (1.18) ψB
A are components of

a second-rank spinor, the quantity F is an invariant (at any rate, it is invariant
under continuous orthogonal transformations of the basis Эi ), while F i1i2···ik
are components of a rank-k tensor, antisymmetric with respect to all indices.
Equations (1.17) and (1.18) realize a linear nondegenerate connection between
the components of an arbitrary second-rank spinor and those of the tensors F ,
F i1i2···ik . Thus, in the complex Euclidean space E+

2ν , a second-rank spinor with the
components ψB

A is equivalent to a set of tensors consisting of a scalar, a vector and
antisymmetric tensors with ranks up to 2ν inclusive:

‖ψB
A‖ ∼ {

F,F i, F i1i2 , . . . , F i1i2...i2ν
}
.

Raising the index A in Eq. (1.17) using the metric spinor E, one can write
Eq. (1.17) in the form

ψBA = 1

2ν

[

(−1)
1
2 ν(ν+1)F eBA +

2ν∑

k=1

1

k !F
i1i2···ik ◦

γ BA
i1i2···ik

]

, (1.94)
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to be used in what follows. For the coefficients F , F i1i2···ik in Eq. (1.94), we have

F = eBAψ
BA = ψA

A,

F i1i2···ik = (−1)k
◦
γ

i1i2···ik
BA ψBA = (−1)

1
2 k(k−1) ◦

γ A
B
i1i2···ikψB

A. (1.95)

If, in Eqs. (1.95), the components of the second-rank spinor ψBA are symmetric,
ψBA = ψAB , then, due to the symmetry properties (1.53), (1.55) of the spintensors
E and

◦
γ i1i2···ik , some of the components of the tensors F and F i1i2···ik turn to zero:

F = 0 if
1

2
ν(ν + 1) is odd,

F i1i2···ik = 0 if
1

2
[ν(ν + 1) + k(k + 1)] is odd.

If, in Eqs. (1.94) and (1.95), the components of the second-rank spinor ψBA are
antisymmetric, ψBA = −ψAB , then, due to the symmetry properties (1.53) and
(1.55), we find:

F = 0 if
1

2
ν(ν + 1) is even,

F i1i2···ik = 0 if
1

2
[ν(ν + 1) + k(k + 1)] is even.

It is clear that the components of a spinor of any even rank may be expanded,
for each pair of indices, in the set of invariant spintensors E−1,

◦
γ iE

−1,. . . ,
◦
γ i1i2...i2ν

E−1. Therefore even-rank spinors in the Euclidean complex space E+
2ν are

equivalent to certain sets of tensors in E+
2ν .

1.5 Semispinors in Even-Dimensional Complex Euclidean
Spaces

Let us introduce, in the complex Euclidean space E+
n , n = 2ν, the Levi-Civita

pseudotensor

◦
ε = ◦

εi1i2...inЭi1Эi2 . . .Эin ,
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determined in an orthonormal basis Эi in E+
n by the contravariant components

◦
ε
i1i2...in =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if the substitution

(
i1 i2 . . . in

1 2 . . . n

)
is even,

−1 if the substitution

(
i1 i2 . . . in

1 2 . . . n

)
is odd,

0 if among the indices ik at least two

coincide.

By definition, the contravariant components of the Levi-Civita pseudotensor
◦
εi1i2...in are antisymmetric in all indices, and under an orthogonal transformation

Э′
i = lj iЭj , Эi = bj

iЭ′
j

of the vectors of the basis Эi they are transformed as follows:

(◦
εi1i2...in

)′ = 1

det ‖bm
n‖bi1

j1b
i2
j2 · · · bin

jn

◦
εj1j2...jn ≡ ◦

εi1i2...in .

Thus the components of the pseudotensor
◦
εi1i2...in are invariant under all orthog-

onal transformations of bases in the space E+
n .

The covariant components of the pseudotensor
◦
εi1i2...in in an orthonormal basis

Эi numerically coincide with the contravariant ones,
◦
εi1i2...in :

◦
εi1i2...in = ◦

εi1i2...in .

Using the Levi-Civita pseudotensor, definition (1.21) of the components of the

second-rank spinor
◦
γ 2ν+1 may be written in an explicitly invariant form:

◦
γ 2ν+1 = iν

(2ν) !
◦
εi1i2...i2ν

◦
γ i1

◦
γ i2

· · · ◦
γ i2ν

. (1.96)

The transformation law (1.91) for the components of
◦
γ 2ν+1 under transforma-

tions of the basis Эi is quite clear from Eq. (1.96).
If the components of the first-rank spinor ψ in the space E+

2ν are not arbitrary but
are related by

ψ = ◦
γ 2ν+1ψ or ψ = − ◦

γ 2ν+1ψ, (1.97)

then such a spinor is called a semispinor in the space E+
2ν .
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From the invariance of
◦
γ 2ν+1 under proper orthogonal transformations of the

basis Эi it follows that Eqs. (1.97) are also invariant under proper orthogonal
transformations of bases in E+

2ν . Therefore the sets ψ , defined by Eqs. (1.97), form
subspaces in the space S2ν which are invariant with respect to the proper orthogonal
group of transformations of bases in E+

2ν .
Let ψ be the components of an arbitrary spinor in the space E+

2ν , and let us
introduce two spinors with components ψ(I) and ψ(II) specified in the same basis
as ψ:

ψ(I) = 1

2

(
I + ◦

γ 2ν+1
)
ψ, ψ(II) = 1

2

(
I − ◦

γ 2ν+1
)
ψ. (1.98)

From definitions (1.98) and from the equality

◦
γ 2ν+1

◦
γ 2ν+1 = I,

which holds by virtue of definition (1.21), it follows that the components ψ(I) and
ψ(II) satisfy the equations

ψ(I) = ◦
γ 2ν+1ψ(I), ψ(II ) = − ◦

γ 2ν+1ψ(II).

Thus the components ψ(I) and ψ(II) determine semispinors in the space E+
2ν .

Let us introduce, in the spinor space S2ν , ν > 1, a special basis, to be denoted
∗
εA, in which the spintensors

◦
γ i are represented by the following matrices:

◦
γ 2ν =

∥
∥
∥
∥

0 I

I 0

∥
∥
∥
∥ ,

◦
γ α =

∥
∥
∥
∥
∥

0 −i
◦
σα

i
◦
σα 0

∥
∥
∥
∥
∥
, α = 1, 2, . . . , 2ν − 1. (1.99)

Here, 0 is the zero matrix of order 2ν−1 and I is the unit matrix of order 2ν−1.
The matrices

◦
σα , also being of order 2ν−1 with α = 1, 2, . . . , 2(ν − 1), satisfy the

equations

◦
σα

◦
σβ + ◦

σβ
◦
σα = 2δαβI,

and the matrix
◦
σ 2ν−1 is defined by the equality

◦
σ 2ν−1 = iν−1 ◦

σ 1
◦
σ 2 · · · ◦

σ 2(ν−1).

In this case, we have for
◦
γ 2ν+1:

◦
γ 2ν+1 =

∥
∥
∥
∥
I 0
0 −I

∥
∥
∥
∥ .
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Let us suppose that the matrices
◦
σα in definitions (1.99) are Hermitian and that

they are symmetric for α = 1, 2, . . . , ν − 1 and antisymmetric for α = ν, ν +
1, . . . , 2(ν − 1):

◦
σT

1 = ◦
σ 1,

◦
σT

2 = ◦
σ 2, . . . ,

◦
σT

ν−1 = ◦
σν−1,

◦
σT

ν = − ◦
σν,

◦
σT

ν+1 = − ◦
σν+1, . . . ,

◦
σT

2(ν−1) = − ◦
σ 2(ν−1).

In this case, the metric spinor E in the Euclidean space E+
2ν for even ν may be

defined in the spinbasis
∗
εA by the matrix of covariant components

E = ‖eBA‖ =
∥
∥
∥∥
ε 0
0 −ε

∥
∥
∥∥ , (1.100)

where the matrix ε of order 2ν−1, satisfies the equation

◦
σT

α = −ε
◦
σαε

−1. (1.101)

For odd ν, we define the metric spinor in the spinbasis
∗
εA in the following way:

E = ‖eBA‖ =
∥
∥
∥∥

0 −ε

ε 0

∥
∥
∥∥ , (1.102)

where ε satisfies the equation

◦
σT

α = ε
◦
σαε

−1. (1.103)

It is not difficult to verify that, with the metric spinor E specified in this way,
equality (1.44), serving as a definition of E, really holds. The matrix ε, satisfying
Eqs. (1.101) for even ν and Eqs. (1.103) for odd ν, may be written explicitly in the
form

ε = λ
◦
σ ν

◦
σν+1 · · · ◦

σ 2(ν−1).

Here, λ is an arbitrary nonzero complex number.
The infinitesimal operators of the spinor representation, defined by Eq. (1.68),

have the following form in the spinbasis
∗
εA:

Aα,2ν = 1

2

∥
∥∥
∥
∥
−i

◦
σα 0

0 i
◦
σα

∥
∥∥
∥
∥
, Aαβ = 1

2

∥
∥∥
∥
∥

◦
σ [α ◦

σβ] 0

0
◦
σ [α ◦

σβ]

∥
∥∥
∥
∥
,

α, β = 1, 2, . . . , 2ν − 1. (1.104)
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From expressions (1.104) for the infinitesimal operators Aij it follows that the
group of spinor transformations {±S}, corresponding to the proper orthogonal group
of transformations of the bases Эi in the space E+

2ν , is defined in the chosen special

spinbasis
∗
εA by the matrices S of the form

S =
∥
∥∥
∥
A 0
0 D

∥
∥∥
∥ , (1.105)

where A and D are some matrices of the order 2ν−1.
Evidently, the sets of matrix pairs {±D}, {±A} corresponding to the group SO+

2ν
of proper orthogonal transformations of bases of the space E+

2ν form groups which
realize representations of the SO+

2ν group.
It follows from relation (1.105) that the spinor representation of the SO+

2ν group
is reducible and splits into two different representations.

Using the matrices
◦
σα , Eqs. (1.59), which define the spinor representation of the

SO+
2ν group, may be written in the form

−ilα2ν
◦
σα + l2ν2νI = A−1D,

ilα2ν
◦
σα + l2ν2νI = D−1A,

lαβ
◦
σα + il2νβI = A−1 ◦

σβD,

lαβ
◦
σα − il2νβI = D−1 ◦

σβA. (1.106)

Due to orthogonality of the transformation lj i , in Eqs. (1.106), only the following
ones are independent:

−ilα2ν
◦
σα + l2ν2νI = A−1D,

lαβ
◦
σα + il2νβI = A−1 ◦

σβD. (1.107)

Let us also write the normalization conditions (1.60) in the spinbasis
∗
εA for even

ν:

ε = AT εA, ε = DT εD. (1.108)

For odd ν we have

ε = AT εD. (1.109)

Note that it follows from the first equation (1.107) that, for proper orthogonal
transformations of the basis Эi of the Euclidean space E+

2ν , leaving the basis vector
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Э2ν invariable, if the equalities

l2ν2ν = 1, lα2ν = 0, (1.110)

are valid, the matrices D and A coincide, D = A.
In this case, Eqs. (1.107) pass over to the following equations:

lαβ
◦
σα = A−1 ◦

σβA. (1.111)

It is easy to see that, in the spinbasis
∗
εA under consideration, from the condition

ψ = ◦
γ 2ν+1ψ it follows

ψ1+2ν−1 = ψ2+2ν−1 = · · · = ψ2ν = 0,

while from the condition ψ = − ◦
γ 2ν+1ψ it follows

ψ1 = ψ2 = · · · = ψ2ν−1 = 0.

Let us denote the column of contravariant components ψ1, ψ2,. . . , ψ2ν−1
by the

symbol ϕ and the column of contravariant components ψ1+2ν−1
, ψ2+2ν−1

, . . . , ψ2ν

by the symbol χ :

ϕ =

∥
∥
∥
∥
∥
∥∥
∥
∥

ψ1

ψ2

...

ψ2ν−1

∥
∥
∥
∥
∥
∥∥
∥
∥

, χ =

∥∥
∥
∥
∥
∥∥
∥
∥
∥

ψ1+2ν−1

ψ2+2ν−1

...

ψ2ν

∥∥
∥
∥
∥
∥∥
∥
∥
∥

.

Then, for the contravariant components of the semispinors ψ(I) and ψ(II), in the

spinbasis
∗
εA, we can write

ψ(I) =
∥
∥∥
∥
ϕ

0

∥
∥∥
∥ , ψ(II ) =

∥
∥∥
∥

0
χ

∥
∥∥
∥ .

Here 0 is a column of 2ν−1 zeros.
According to definition (1.100), for covariant components of the semispinors

ψ(I ), ψ(I I ) in the spinbasis
∗
εA, for even ν we have

ψ̃(I ) = (
ϕT εT , 0T

)
, ψ̃(II ) = (

0T , −χT εT
)
.

For odd ν, the covariant components of the semispinors ψ (I ) and ψ(I I ),
according to the definition (1.102), are given by

ψ̃(I ) = (
0T , ϕT εT

)
, ψ̃(II ) = (− χT εT , 0T

)
.
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Relation (1.105) implies that, under proper orthogonal transformations of the
orthonormal basis Эi in the space E+

2ν , the covariant and contravariant components
of the spinor, ψA and ψA (A = 1, 2,. . . , 2ν−1) and its components ψA and ψA (A =
1 + 2ν−1, 2 + 2ν−1,. . . , 2ν), being calculated in the spinbasis

∗
εA, are transformed

separately. Therefore, restricting ourselves to considering only proper orthogonal
transformations of the bases Эi in E+

2ν , we can define the covariant and contravariant
components of the semispinors ψ (I ) and ψ (I I ) by only 2ν−1 components.

Under reflection transformations of bases in the space E+
2ν , the components

of semispinors satisfying the equation ψ = ± ◦
γ 2ν+1ψ , pass over to components

satisfying the equation ψ = ∓ ◦
γ 2ν+1ψ:

ψ ′
(I ) = 1

2

{(
I + ◦

γ 2ν+1
)
ψ
}′ = 1

2

(
I − ◦

γ 2ν+1
)
ψ ′,

ψ ′
(I I ) = 1

2

{(
I − ◦

γ 2ν+1
)
ψ
}′ = 1

2

(
I + ◦

γ 2ν+1
)
ψ ′.

1.6 Spinors in Even-Dimensional Real Euclidean
and Pseudo-Euclidean Spaces E

q

2ν

1.6.1 The Pseudo-Orthogonal Group of Transformations of
Orthonormal Bases in Pseudo-Euclidean Spaces E

q

2ν

Consider a 2ν-dimensional pseudo-Euclidean vector space E
q

2ν of index q , i.e., a
vector space in which a scalar product of the vectors of an orthonormal basis Эi is
specified, being defined in the following way8:

gij = (
Эi ,Эj

) = −1 for i = j = 1, 2, . . . , q,

gij = (
Эi ,Эj

) = +1 for i = j = q + 1, q + 2, . . . , 2ν,

gij = (
Эi ,Эj

) = 0 for i �= j. (1.112)

8The space E
q

2ν may be singled out in the complex Euclidean vector space E+
2ν as a linear real shell

of a basis of the space E+
2ν of the following form:

i
◦
Э1, i

◦
Э2, . . . , i

◦
Эq ,

◦
Эq+1, . . . ,

◦
Э2ν ,

where
◦
Эi is an orthonormal basis in E+

2ν .
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Thus the scalar square of a vector with components ai in an orthonormal basis of
the space E

q

2ν has the form

a2 = −(a1)2 − · · · − (aq)2 + (aq+1)2 + · · · + (a2ν)2.

If q = 0, the scalar square of a vector is defined as a sum of squares of its
components in an orthonormal basis. In this case, the space E0

2ν is called a real
Euclidean vector space.

Linear real transformations of an orthonormal basis

Э′
i = lj iЭj , (1.113)

leaving invariant the scalar products gij of the vectors Эi , are called
pseudo-orthogonal transformations. As follows from the definition, the pseudo-
orthogonality condition for the transformation (1.113) is written in the form

gij = lmil
n
j gmn. (1.114)

Let us introduce notations for the principal minors of the matrix of coefficients
of the transformation lj i :

Δ1 =

∥
∥
∥
∥∥
∥
∥
∥
∥

l11 l12 . . . l1q

l21 l22 . . . l2q
...

...
...

lq1 lq2 . . . lqq

∥
∥
∥
∥∥
∥
∥
∥
∥

, Δ2 =

∥
∥
∥
∥∥
∥
∥
∥
∥

lq+1
q+1 lq+1

q+2 . . . lq+1
2ν

lq+2
q+1 lq+2

q+2 . . . lq+2
2ν

...
...

...

l2νq+1 l2νq+2 . . . l2ν2ν

∥
∥
∥
∥∥
∥
∥
∥
∥

. (1.115)

As known, for any pseudo-orthogonal transformations, the determinants Δ1 and
Δ2 are nonzero, and therefore for continuous pseudo-orthogonal transformations
these determinants preserve their sign. In accordance with four possible sign
combinations of Δ1 and Δ2, the pseudo-orthogonal transformation group O

q
2ν may

be split into four connected components9:
1. The first connected component is defined by the conditions

Δ1 > 0, Δ2 > 0.

The set of all pseudo-orthogonal transformations belonging to the first connected
component forms a group called the proper pseudo-orthogonal group. For instance,
the identical transformation is a representative of the first connected component.

9Recall that a connected component of a continuous group is, by definition, such a connected part
of the group that its any extension is not connected.
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2. The second connected component of the pseudo-orthogonal group O
q
2ν is

defined in the following way:

Δ1 > 0, Δ2 < 0.

An example of a representative of the second connected component is the
transformation

L2 : Э′
2ν = −Э2ν, Э′

α = Эα, α = 1, 2, . . . , 2ν − 1. (1.116)

Any transformation from the second connected component may be represented
as a product L2L, where L is some proper pseudo-orthogonal transformation.

3. The third connected component of the pseudo-orthogonal group O
q

2ν is
defined by the condition

Δ1 < 0, Δ2 > 0.

As an example of a pseudo-orthogonal transformation from the third connected
component, one can take the transformation

L3 : Э′
1 = −Э1, Э′

α = Эα, α = 2, 3, . . . , 2ν. (1.117)

Any pseudo-orthogonal transformation from the third connected component may
be represented as a product L3L, where L is some proper pseudo-orthogonal
transformation.

4. For the fourth connected component of the pseudo-orthogonal group we have

Δ1 < 0, Δ2 < 0.

As a representative of the fourth connected component, one can take, for
example, the following transformation:

L4 : Э′
1 = −Э1, Э′

2ν = −Э2ν, Э′
α = Эα, α = 2, 3, . . . , 2ν − 1.

(1.118)

Any pseudo-orthogonal transformation of the basis Эi from the fourth connected
component may be represented in the form L4L, where L is a proper pseudo-
orthogonal transformation.

It follows from Eqs. (1.114) that the determinant of the full matrix of coefficients
lj i is equal to +1 or −1:

Δ = det ‖lj i‖ = ±1.

Therefore the determinant Δ for continuous pseudo-orthogonal transforma-
tions (1.113) is always equal to +1 or −1; thus it preserves its value in any of
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the connected components of the pseudo-orthogonal group. Evidently, Δ > 0 for
the first and fourth connected components and Δ < 0 for the second and third
connected components.

1.6.2 Algebra of γ -Matrices

With the aid of the matrices
◦
γ j , satisfying Eq. (1.1), let us introduce the set of

matrices γj :

γj = i
◦
γ j for j = 1, 2, . . . , q,

γj = ◦
γ j for j = q + 1, q + 2, . . . , 2ν. (1.119)

Due to Eq. (1.1) and definitions (1.119), the matrices γj satisfy the equation

γiγj + γjγi = 2gij I, (1.120)

where the components gij are defined by equalities (1.112).

If the matrices
◦
γ j in definitions (1.119) satisfy Eqs. (1.36) and (1.37), then,

evidently, the matrices γj for j = 1, 2,. . . , q are anti-Hermitian, while for j = q+1,
q + 2,. . . , 2ν they are Hermitian:

γ̇ 1 = −γ T
1 , γ̇ 2 = −γ T

2 , . . . , γ̇ q = −γ T
q ,

γ̇ q+1 = γ T
q+1, γ̇ q+2 = γ T

q+2, . . . , γ̇ 2ν = γ T
2ν. (1.121)

Besides, in this case,

γ T
1 = γ1, γ T

2 = γ2, . . . , γ T
ν = γν,

γ T
ν+1 = −γν+1, γ T

ν+2 = −γν+2, . . . , γ T
2ν = −γ2ν. (1.122)

All properties of the matrices
◦
γ j mentioned in Sect. 1.1 are in an obvious way

extended to the matrices γj . In particular, Eqs. (1.7) take the form

tr
(
γi1i2...ik γ

j1j2...jm
) = 0, if k �= m,

tr
(
γi1i2...ik γ

j1j2...jk
) = (−1)

1
2 k(k−1)k ! 2νδ

j1
[i1δ

j2
i2

· · · δjkik]. (1.123)

Here,

γi1i2...ik = γ[i1γi2 · · · γik], γ j1j2...jk = γ [j1γ j2 · · · γ jk].
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The matrices γ j with an upper index are defined using the components gij ,
whose matrix is inverse to the matrix gij = (

Эi ,Эj

)
:

γ j = gij γi, ‖gij ‖ = ‖gij ‖−1.

Thus, by virtue of definition (1.112), we have

γ 1 = −γ1, γ 2 = −γ2, . . . , γ q = −γq,

γ q+1 = γq+1, . . . , γ 2ν = γ2ν.

As in the complex space E+
2ν , in the real space E

q
2ν we define the matrix E by the

following equality:

γ T
i = −EγiE

−1. (1.124)

For even ν, the matrix E satisfying Eq. (1.124) may be represented in the form

E = λγ1γ2 · · · γν, (1.125)

where λ is an arbitrary nonzero complex number. If ν is odd, the matrix E may be
determined in the following way:

E = λγν+1γν+2 · · · γ2ν. (1.126)

Evidently, the symmetry properties of the matrices γi are the same as those of
the matrices

◦
γ i . Therefore, due to Eqs. (1.53) and (1.55), the following symmetry

properties are valid:

ET = (−1)
1
2 ν(ν+1)E,

(
Eγi1i2...ik

)T = (−1)
1
2 [ν(ν+1)+k(k+1)]Eγi1i2...ik .

Consider the set of matricesγ̇ T
i which are Hermitian conjugates of γi . The matrices

−γ̇ T
i satisfy Eq. (1.120), therefore, due to Pauli’s theorem, there is such a matrix β

that

γ̇ T
i = −βγiβ

−1, (1.127)

and this β is defined up to multiplication by an arbitrary nonzero complex number.
It is easy to show that, due to Eqs. (1.127), the following equations also hold:

γ̇ T
i1i2...ik

= (−1)
1
2 k(k+1)βγi1i2...ik β

−1. (1.128)



44 1 Spinors in Finite-Dimensional Spaces

Indeed, let us multiply Eq. (1.127) from the right by βγi2 . . . γik :

γ̇ T
i βγi2 . . . γik = −βγiγi2 . . . γik .

Transposing the matrices β and γim in the left-hand side of this equation
using (1.127), we obtain the equation

(−1)
1
2 k(k+1)(γ̇ iγ̇ i2

· · ·γ̇ ik

)T
β = βγiγi2 · · · γik ,

from which follows (1.128).
Considering the Hermitian conjugate of Eq. (1.127) and multiplying the resulting

equation from the left by β̇T and from the right by (β̇T )−1, we obtain

γ̇ T
i = −β̇T γi

(
β̇T

)−1
. (1.129)

Comparing Eqs. (1.127) and (1.129), we find:

βγiβ
−1 = β̇T γi

(
β̇T

)−1
.

From the latter equation it follows that the matrix β−1β̇T commutes with all γi :

β−1β̇T γi = γiβ
−1β̇T

and consequently the matrix β−1β̇T is proportional to the unit matrix,

β−1β̇T = μI. (1.130)

Multiplying the Hermitian conjugate of Eq. (1.130) from the left by β−1 and
from the right by β̇T , we obtain

β−1β̇T = 1

μ̇
I = μI.

Hence it follows that the coefficient μ is equal to unity by absolute value, μ =
exp iθ , where θ is an arbitrary real number. Normalizing β by multiplying it by

exp
(
− i

2θ
)

, we find that the normalized matrix β is Hermitian,

β̇T = β. (1.131)

With such a normalization, the matrix β is defined up to multiplying by an
arbitrary nonzero real number.

In what follows, we will suppose that the matrix β is defined in such a way that
the Hermitianity condition (1.131) holds.
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Multiplying Eq. (1.128) from the right by β̇T and taking into account the
Hermitianity of β, we obtain

[(
βγi1i2...ik

)˙]T = (−1)
1
2 k(k+1)βγi1i2...ik . (1.132)

Thus the product βγi1i2...ik is either Hermitian or anti-Hermitian, depending on
the value of k.

A direct inspection shows that if the matrices γi satisfy conditions (1.121)
and (1.122), then, for even q < 2ν, the matrix β may be defined by the equality

β = i
1
2 q(q+1)−νγ[q+1γq+2 · · · γ2ν]. (1.133)

If q = 2ν and relations (1.121) are valid, the matrix β may be defined as the unit
matrix, β = I .

For odd q , if the conditions (1.121) and (1.122) are valid, the matrix β may be
defined in the following way:

β = i
1
2q(q+1)γ[1γ2 · · · γq]. (1.134)

Let us denote the product E−1βT by the symbol �,

� = E−1βT , (1.135)

and calculate a product of the matrix � by its complex conjugate matrix �̇. To
do so, we transpose equation (1.127) and substitute γ T

i in the resulting relation
using (1.124):

γ̇ i = (
E−1βT

)−1
γiE

−1βT .

The latter equation implies that the matrix � connects the matrices γi and the
complex conjugate matrices γ̇ i :

γ̇ i = �−1γi�. (1.136)

In a similar way, transposing equations (1.128), we find

γ̇ i1i2...ik
= �−1γi1i2...ik�. (1.137)

Considering a complex conjugate of Eq. (1.136) and multiplying the result from
the left by �̇ and from the right by �̇−1, we obtain

�̇γi�̇
−1 = γ̇ i .



46 1 Spinors in Finite-Dimensional Spaces

Thus

�̇γi�̇
−1 = �−1γi�.

Hence it follows

��̇γi = γi��̇.

Since the matrix ��̇ commutes with all γi , the matrix ��̇ is a multiple of the unit
matrix,

��̇ = ηI. (1.138)

Let us multiply Eq. (1.138) from the left by �−1 and from the right by �. We obtain

�̇� = ηI. (1.139)

Complex conjugation of Eq. (1.139) gives

��̇ = η̇I. (1.140)

Comparing Eqs. (1.138) and (1.140), we find that the number η in Eq. (1.138) is real,
η = η̇.

Since the Hermitian matrix β is defined by Eqs. (1.127) and (1.131) up to
multiplying by an arbitrary nonzero real number, we can normalize β, multiplying
it by |η|1/2, to obtain that the matrix � satisfies the equation ��̇ = ±I . A direct
inspection using definitions (1.125) and (1.126) for E and definitions (1.133) and
(1.134) for β shows that

��̇ = (−1)
1
2 (ν−q)(ν−q−1)I. (1.141)

With the above normalizations, the matrices β and � are defined up to multiply-
ing by −1 (for fixed E). If E is re-defined by E → Eρ exp iϕ, where ρ and ϕ are
arbitrary real numbers, we have

β → ±ρβ, � → ±� exp(−iϕ).

1.6.3 Real and Imaginary Representation of the Matrices γ i

In pseudo-Euclidean spaces E
q
2ν of any dimension 2ν (but with certain values of the

index q), there exist pure real and pure imaginary representations for γ matrices.
The reality condition for γ matrices γi = γ̇i in the space E

q
2ν , by virtue of
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equality (1.136), is written in the form

γi = �−1γi�, or γi� = �γi.

Hence it follows that the matrix � is proportional to the unit matrix, � = λI (λ
is an arbitrary nonzero complex number). Taking into account equality (1.141), we
find

λ̇λ = (−1)
1
2 (ν−q)(ν−q−1).

Evidently, this equality may only hold under the condition

(−1)
1
2 (ν−q)(ν−q−1) = 1. (1.142)

Thus the matrices γi can be real in the spaces E
q

2ν with the dimension and index
satisfying Eq. (1.142). From Eqs. (1.142) it follows ν − q ± 4k = 0, 1 (k =
0, 1, 2, . . . ). This relation holds for any given dimension 2ν for the corresponding
value of the index q .

From the condition that the γ matrices are imaginary, γ̇i = −γi , follows the
equality γi� = −�γi , which has the solution

� = λγ2ν+1, γ2ν+1 = iν−qγ1γ2 · · · γ2ν.

A direct calculation shows that the matrix γ2ν+1, in the case of imaginary γi ,
satisfies the equation γ̇2ν+1γ2ν+1 = (−1)ν−qI . Therefore in this case, taking into
account equality (1.141), we find

λ̇λ = (−1)
1
2 (ν−q)(ν−q+1).

Thus the matrices γi can be pure imaginary only in spaces with the dimension and
index satisfying the condition

(−1)
1
2 (ν−q)(ν−q+1) = 1,

which implies ν − q ± 4k = 0, 3 (k = 0, 1, 2, . . . ).

1.6.4 Spinor Representation of the Group of
Pseudo-Orthogonal Transformations of Bases of the
Space E

q

2ν

Due to the existence of four connected components of the pseudo-orthogonal group
O

q

2ν , the number of different spinor representation of the group O
q

2ν is larger than in
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the case of the complex orthogonal group O+
2ν . Besides, the reality condition for the

coefficients of the pseudo-orthogonal transformation lj i leads to some additional
properties of spinor transformations S which are absent in the complex Euclidean
space E+

2ν .
The spinor representations of the O

q
2ν group may be conveniently split into

several classes [81, 84].
I. The first class of spinor representations O

q
2ν → {±S} can be defined by the

equations

lj iγj = S−1γiS (1.143)

and one of the normalization conditions

a. ST ES = E,

b. ST ES = E sign Δ,

c. ST ES = E sign Δ1,

d. ST ES = E sign Δ2.

(1.144)

For all normalization conditions (1.144), as long as Eqs. (1.143) are valid, the
following equations hold as well:

S−1γ2ν+1S = γ2ν+1 signΔ, γ2ν+1 = iν−qγ1γ2 . . . γ2ν (1.145)

and

ṠT βS = β sign Δ1 (1.146a)

for an odd index q of the pseudo-Euclidean space E
q
2ν or

ṠT βS = β sign Δ2 (1.146b)

for an even index q .
Equations (1.145) may be proved in the same way as Eqs. (1.72) in the complex

Euclidean space E+
2ν .

Equations (1.146a) and (1.146b) realize a connection between the spinor trans-
formations S and the Hermitian conjugate transformations ṠT and follow from
the reality of the coefficients lj i . To prove Eqs. (1.146a) and (1.146b), we take
the Hermitian conjugate of Eq. (1.143) and, in the result obtained, we replace γ̇ T

i

according to the formula (1.127). Due to reality of lj i , we obtain

lj iβγjβ
−1 = ṠT βγiβ

−1(ṠT
)−1

.
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Whence we find

lj iγj = β−1ṠT βγi
(
β−1ṠT β

)−1
. (1.147)

Comparing Eqs. (1.143) and (1.147), we obtain

β−1ṠT βγi
(
β−1ṠT β

)−1 = S−1γiS.

Hence it follows

Sβ−1ṠT βγi = γiSβ
−1ṠT β.

Thus the matrix Sβ−1ṠT β commutes with all γi and is consequently proportional
to the unit matrix,

Sβ−1ṠT β = ηI.

It is convenient to write the latter equation in the form

ṠT βS = ηβ. (1.148)

Let us find the number η in Eq. (1.148). Writing the Hermitian conjugate of
Eq. (1.148) taking into account the Hermitianity of the matrices β, we find

ṠT βS = η̇β = ηβ.

So the coefficient η is real, η = η̇. It is easy to see that Eqs. (1.148) imply

detS · det Ṡ = η2ν

.

Evidently, for any normalization condition in (1.144), written with the aid of the
matrix E, the equality

(
det S

)2 = 1 holds. Therefore the determinant det S is real,
detS = det Ṡ, and for η we have η2ν = 1. So, since η is real, we obtain η = ±1 and
consequently

ṠT βS = ±β. (1.149)

To determine the sign in Eq. (1.149), let us calculate the trace of the Hermitian
matrix ṠT S. We have, using the equality (1.148),

tr
(
ṠT S

) = tr
(
ηβS−1β−1S

)
. (1.150)
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If the index q of the pseudo-Euclidean space E
q
2ν is odd, then, substituting the

matrix β in Eq. (1.150) according to Eq. (1.134), we find

tr
(
ṠT S

) = tr
(
ηγ[1γ2 · · · γq]S−1γ−1

[q · · · γ−1
2 γ−1

1] S
)

= tr
[
(−1)

1
2 q(q−1)ηγ [1γ 2 · · · γ q]S−1γ[1γ2 · · · γq]S

]
.

It is easy to see that, due to Eqs. (1.143), the following relations hold:

lj1
i1 l

j2
i2 · · · ljq iq γj1γj2 · · · γjq = S−1γi1γi2 · · · γiq S,

and using them, the expression for tr
(
ṠT S

)
may be transformed to

tr
(
ṠT S

) = tr
[
(−1)

1
2 q(q−1)ηγ [1γ 2 · · · γ q]lj1

1l
j2

2 · · · ljq qγ[j1γj2 · · · γjq ]
]

= tr
[
ηδ1[j1

δ2
j2

· · · δqjq ]q ! lj1
1l

j2
2 · · · ljq qI

]
= 2νηΔ1.

Here, determinant Δ1 is defined by equality (1.115). The eigenvalues of a matrix
formed as a product of any matrix S by its Hermitian conjugate matrix ṠT , are
positive, therefore

tr
(
ṠT S

)
> 0.

Consequently, for an odd index q , in Eq. (1.149) we take the “+” sign if Δ1 > 0
and the “−” sign if Δ1 < 0:

ṠT βS = β signΔ1.

If the index q is even, then, using definition (1.133), we find for the trace of the
matrix ṠT S:

tr
(
ṠT S

) = 2νηΔ2,

where the determinant Δ2 is defined by the equality (1.115). Therefore, for even q ,
in Eq. (1.149) we take the “+” sign if Δ2 > 0 and the “−” sign if Δ2 < 0:

ṠT βS = β signΔ2.

Thus relations (1.146a) and (1.146b) have been proved.
If the index q is odd, then, due to Eqs. (1.146a) and (1.144), the following

equation also hold (equation (a) in (1.144) corresponds to equation (a) in (1.151),
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equation (b) in (1.144) corresponds to equation (b) in (1.151) etc.)

a. S−1�Ṡ = � signΔ1,

b. S−1�Ṡ = � signΔ2,

c. S−1�Ṡ = �,

d. S−1�Ṡ = � signΔ. (1.151)

For an even index q , due to Eqs. (1.146b) and (1.144), the following equations
hold:

a. S−1�Ṡ = � signΔ2,

b. S−1�Ṡ = � signΔ1,

c. S−1�Ṡ = � signΔ,

d. S−1�Ṡ = �. (1.152)

Assuming that the symmetry conditions (1.122) for the matrices γi are satisfied,
let us write down the spinor transformations S2, S3, S4, corresponding to the reflec-
tion transformations L2, L3, L4 defined by equalities (1.116), (1.117) and (1.118)
for different normalizations in (1.144):

a b c d
S2 iν+1γ2νγ2ν+1 iνγ2νγ2ν+1 iν+1γ2νγ2ν+1 iνγ2νγ2ν+1

S3 iνγ1γ2ν+1 iν+1γ1γ2ν+1 iν+1γ1γ2ν+1 iνγ1γ2ν+1

S4 iγ1γ2ν iγ1γ2ν γ1γ2ν γ1γ2ν

For all normalizations (1.144), the spinor transformations S2, S3 and S4 anti-
commute with each other:

S2S3 + S3S2 = 0, S2S4 + S4S2 = 0,

S3S4 + S4S3 = 0.

Let us also write down the spinor transformations SJ corresponding to the full
reflection transformation Э′

i = −Эi , i = 1, 2,. . . , 2ν:

a b c d
SJ iνγ2ν+1 iνγ2ν+1 iν−qγ2ν+1 iν−qγ2ν+1

II. The second class of spinor representations is defined by the equation

lj iγj = S−1γiS signΔ (1.153)
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and one of the normalization conditions (1.144).
For all normalization conditions (1.144) and for any index q of the space E

q
2ν ,

due to Eqs. (1.153) and (1.144), the following equations hold:

ṠT βS = β signΔ2,

S−1γ2ν+1S = γ2ν+1 signΔ. (1.154)

Due to Eqs. (1.154) and (1.144), we also have the equations

a. S−1�Ṡ = � signΔ2,

b. S−1�Ṡ = � signΔ1,

c. S−1�Ṡ = � signΔ,

d. S−1�Ṡ = �.

If the matrices of components of the spintensor γi satisfy the symmetry con-
ditions (1.122), then the spinor transformations S2, S3, S4, corresponding to the
transformations (1.116), (1.117), (1.118) of the basis Эi have the following form
for the class of spinor representations under consideration:

a b c d
S2 iγ2ν γ2ν iγ2ν γ2ν

S3 γ1 iγ1 iγ1 γ1

S4 iγ1γ2ν iγ1γ2ν γ1γ2ν γ1γ2ν

(1.155)

For all normalization conditions (1.144), the spinor transformations S2, S3, S4,
defined according to (1.155), anti-commute with each other.

The transformation of the full reflection of the basis vectors Э′
i = −Эi is in

correspondence with the spinor transformation SJ defined in the following way:

a b c d
SJ iνγ2ν+1 iνγ2ν+1 iν−qγ2ν+1 iν−qγ2ν+1

The spinor representations O
q

2ν → {±SII }, defined by equalities (1.153)
and (1.144), are equivalent to the spinor representations O

q

2ν → {±SI } defined
by equalities (1.143) and (1.144) and are connected with them by the relationship

±SII = A(±SI )A
−1,

where

A = I + iγ2ν+1.
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III. The third class of spinor representations of the pseudo-orthogonal group is
defined by the equations

lj iγj = S−1γiS signΔ1 (1.156)

and one of the normalization conditions (1.144).
Due to Eqs. (1.156), for any normalization in (1.144), Eq. (1.145) holds along

with the equation

ṠT βS = β (1.157a)

for odd q and the equation

ṠT βS = β sign Δ2 (1.157b)

for even q .
For the class of spinor representations under consideration, for an odd index q ,

the four normalizations in (1.144) are in correspondence with the following four
relations connecting the spinor transformations S and Ṡ:

a. S−1�Ṡ = �,

b. S−1�Ṡ = � signΔ,

c. S−1�Ṡ = � signΔ1,

d. S−1�Ṡ = � signΔ2.

For an odd index q , the normalization conditions (1.144) correspond to
Eqs. (1.152).

Let us write out the spinor transformations S2, S3, S4, corresponding to the
reflection transformations (1.116), (1.117) and (1.118) in a spinbasis in which the
symmetry conditions (1.122) are fulfilled:

a b c d
S2 iν+1γ2νγ2ν+1 iνγ2νγ2ν+1 iν+1γ2νγ2ν+1 iνγ2νγ2ν+1

S3 γ1 iγ1 iγ1 γ1

S4 iν+1γ1γ2νγ2ν+1 iν+1γ1γ2νγ2ν+1 iνγ1γ2νγ2ν+1 iνγ1γ2νγ2ν+1

For all normalization conditions (1.144), the spinor transformations S2, S3, S4
commute with each other:

S2S3 = S3S2, S2S4 = S4S2, S3S4 = S4S3.
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For the transformation of the full reflection, the spinor transformations SJ for an
even index q have the form

a b c d
SJ iνγ2ν+1 iνγ2ν+1 iν−qγ2ν+1 iν−qγ2ν+1

and for an odd index q

a b c d
SJ I I iI iI

Hence it is evident that, for an odd index q , the identical transformation and
the full reflection transformation E

q

2ν are in correspondence with the same spinor
transformations (for normalizations (a) and (b) in (1.144)). Thus these spinor
representations are not exact.

IV. The fourth class of spinor representations of the pseudo-Euclidean group O
q

2ν
may be specified by the equation

lj iγj = S−1γiS signΔ2 (1.158)

and one of the normalization conditions (1.144).
Under any normalization condition (1.144), due to Eqs. (1.158), Eq. (1.145) is

valid as well as the equation

ṠT βS = β sign Δ

for an odd index q of the pseudo-Euclidean space E
q

2ν , or the equation

ṠT βS = β sign Δ2

for an even index q .
For an odd index q , the following relations between S and Ṡ correspond to the

normalization conditions (1.144):

a. S−1�Ṡ = � signΔ,

b. S−1�Ṡ = �,

c. S−1�Ṡ = � signΔ2,

d. S−1�Ṡ = � signΔ1.

For an even index q , Eqs. (1.152) are valid.
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If the matrices γi satisfy relations (1.122), then for the spinor transformations
corresponding to the reflection transformations (1.116), (1.117) and (1.118) we have

a b c d
S2 iγ2ν γ2ν iγ2ν γ2ν

S3 iνγ1γ2ν+1 iν+1γ1γ2ν+1 iν+1γ1γ2ν+1 iνγ1γ2ν+1

S4 iν+1γ1γ2νγ2ν+1 iν+1γ1γ2νγ2ν+1 iνγ1γ2νγ2ν+1 iνγ1γ2νγ2ν+1

Under any normalization condition (1.144), the spinor transformations S2, S3,
S4 commute with each other. The transformation of the full reflection is in
correspondence with the same spinor transformations SJ as for class III spinor
representations.

The spinor representations O
q

2ν → {±SIV }, defined by equalities (1.158)
and (1.144), are equivalent to the representations O

q

2ν → {±SIII } defined by
equalities (1.156) and (1.144) and are connected with them by a relation of the
form ±SIV = A(±SIII )A

−1, where A = I + iγ2ν+1.
A proof of the relations connecting the spinor transformations S and Ṡ for the

second, third and fourth classes of spinor representations is entirely similar to the
corresponding proof for spinor representations of the first class.

The spinor representation of the group of proper pseudo-orthogonal transforma-
tions is the same in all classes considered above and is defined by the equations

lj iγj = S−1γiS, ST ES = E.

Evidently, all spintensors E, β, � and γ2ν+1 are invariant under the proper
pseudo-orthogonal transformations of the basis Эi .

For the small proper pseudo-orthogonal transformations

lj i = δ
j
i + δεi

j , δεij = −δεji,

the spinor transformations are determined by the formula

S = I + 1

4
γ ij δεij , γ ij = 1

2

(
γ iγ j − γ jγ i

)
, (1.159)

obtained in the same way as in the space E+
2ν .

Since for both real and imaginary representations of the matrices γ i the
infinitesimal operators 1

4γ
ij in Eq. (1.159) are real, for such representations of the

matrices γi , the spinor representations are realized by real matrices S, and in this
case one can consider spinors with real components.
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1.6.5 Spinors in the Space E
q

2ν

Spinors in the pseudo-Euclidean space E
q

2ν are defined as invariant geometric
objects whose components are transformed according to a spinor representation
of the pseudo-orthogonal group O

q

2ν → {±S}. Along with the spinor whose
components are transformed with the matrices S, we will also consider an object
in the space E

q

2ν whose components are transformed with the aid of the complex
conjugate matrices Ṡ. We will mark the indices of components of such objects by a
dot and call them dotted indices. Thus, under a transformation of the orthonormal
basis Эi of the space E

q

2ν , the components of a first-rank spinor ψ are transformed
according to the formulae (we omit the ± sign)

(ψA)′ = SA
BψB, (ψB)′ = ZA

BψA,

while the components of a spinor with dotted indices are transformed according to
formulas

(ψȦ)′ = ṠA
BψḂ, (ψḂ)′ = ŻA

BψȦ.

It is clear that the complex conjugate components of the spinor ψ̇A, ψ̇A, are
transformed as components of a spinor with dotted indices ψȦ, ψȦ. Spinors with
any number of usual and dotted indices are also defined in an obvious way.

The normalization conditions for the spinor transformations (1.144) and
Eqs. (1.146), (1.151), (1.152) (or similar equations for the other classes of spinor
representations) mean that the matrices E, β and � define, in the pseudo-Euclidean
space E

q
2ν , the components of spintensors with the following structure of indices:

E = ‖eBA‖, β = ‖βḂA‖, � = ‖�A
Ḃ‖.

It is clear that the components of the spinors E, β and � are invariant under
continuous transformations of the orthonormal basis Эi of the space E

q
2ν ; at some

reflection transformations, components of the spinors E, β, � may change their sign
depending on the particular class of spinor representations.

Evidently, the matrices Eγ i1i2...ik and βγ i1i2...ik also form the components of
spintensors which are invariant at least under the continuous transformations of
bases of the space E

q
2ν :

Eγ i1i2...ik = ‖γ i1i2...ik
BA ‖, βγ i1i2...ik = ‖γ i1i2...ik

ḂA
‖.

Using Eqs. (1.151) and (1.152) (or similar equations for other classes of spinor
representations) and the transformation law for the components of spinors with the
dotted indices, it is easy to obtain that the components ψ+B , determined by the
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equality

ψ+B = �B
Ȧψ̇

A, (1.160)

are transformed due to transformations of the orthonormal basis Эi of the space E
q

2ν
as contravariant components of a first-rank spinor. The spinor ψ+ = ±ψ+AεA with
the contravariant components ψ+A is called conjugate with respect to the spinor
ψ = ±ψAεA with the contravariant components ψA, calculated in the same basis
as ψ+A.10

It is easy to calculate the conjugate spinor of a conjugate spinor ψ+. We have

(
ψ+A

)+ = �A
Ḃψ̇+B = �A

Ḃ

(
�B

Ċψ̇
C
)˙= �A

Ḃ

(
�B

Ċ

)
ψ̇C.

Taking into account relation (1.141), we find

(
ψ+A

)+ = (−1)
1
2 (ν−q)(ν−q−1)ψA.

Since the components ψA and −ψA define the same spinor, the latter equality
implies that the conjugate spinor of a conjugate spinor ψ coincides with the
spinor ψ .

Covariant components of the conjugate spinor ψ+
A are determined using the

metric spinor E = ‖eAB‖:

ψ+
B = eBAψ

+A = eBA�
A
Ċψ̇C. (1.161)

Bearing in mind definition (1.135), we can also rewrite Eq. (1.161) for the
covariant components of a conjugate spinor in the form

ψ+
B = βȦBψ̇

A. (1.162)

Denoting the row of the covariant components ψ+
A by the symbol ψ+, we can

write definition (1.162) in a matrix form:

ψ+ = ψ̇T β.

10The conjugate spinor may also be defined with the aid of the spinor β defined, instead of
Eq. (1.127), by the equation

γ̇ T
i = βγiβ

−1. (*)

In physical applications, in the four-dimensional space E1
4 with the metric signature (+,+,+,−),

definition (1.127) is used; in the four-dimensional space E3
4 , with the metric signature (−,−,−,+)

(where the matrices γi are related to the matrices γi of the space E1
4 by the factor i) one uses

definition (*). It is easy to see that the matrices β, defined in the same space by Eqs. (1.127) and
(*), differ by the factor γ2ν+1.
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1.6.6 Connection Between Second-Rank Spinors and Tensors
in an Even-Dimensional Pseudo-Euclidean Space E

q

2ν

In the real space E
q

2ν , the expansion of the components of the second-rank spinor
ψBA in invariant spintensors E−1 and γi1i2···ikE−1 has the form

ψBA = 1

2ν

[

(−1)
1
2 ν(ν+1)F eBA +

2ν∑

k=1

1

k !F
i1i2···ik γ BA

i1i2···ik

]

, (1.163)

where the quantities F , F i1i2...ik are defined by the relations

F = eBAψ
BA,

F i1i2···ik = (−1)kγ i1i2···ik
BA ψBA. (1.164)

Formulae (1.164) for F , F i1i2...ik are obtained by contracting equality (1.163)
with components eBA and γ

i1i2···ik
BA with respect to the indices B, A and takes into

account relations (1.123).
At continuous transformations of the basis Эi in the space E

q

2ν , the quantity F

is invariant, while the quantities F i1i2···ik are transformed as components of an anti-
symmetric tensor of rank k. Transformations of the quantities F and F i1i2···ik under
reflections of the vectors of the basis Эi depends on the adopted normalization of
spinor transformations.

Due to completeness and linear independence of the set of matrices formed by
components of the spintensors I , γi ,. . . and γi1i2...ik (i1 < i2 < · · · < ik) and due to
non-degeneracy of the matrix β, the set of matrices formed by components of the
spintensors

β−1, γiβ
−1, · · · , γi1i2···i2ν β−1 (i1 < i2 < · · · < ik)

is also complete and linearly independent. Therefore the components ψḂA of a
second-rank spinor with one dotted index in the pseudo-Euclidean space E

q

2ν may
be expanded with respect to the set of invariant spintensors with components

β−1 = ‖βAḂ‖, γi1i2···ik β−1 = ‖γ AḂ
i1i2···ik‖.

The corresponding expansion may be written in the form

ψḂA = 1

2ν

(

HβAḂ +
2ν∑

k=1

i
1
2 k(k−3)

k ! Hi1i2···ik γ AḂ
i1i2···ik

)

. (1.165)
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Contracting equality (1.165) with components of the invariant spintensors βḂA

and γ
i1i2···ik
ḂA

= βḂCγ C
A
i1i2···ik , we find for the components of the tensors H and

Hi1i2···ik :

H = βḂAψ
ḂA,

H i1i2···ik = i
1
2 k(k+1)γ

i1i2···ik
ḂA

ψḂA. (1.166)

In the derivation of Eqs. (1.166), one should take into account the identities

βḂAβ
AḂ = 2ν,

βḂAγ
AḂ
i1i2···ik = tr

(
βγi1i2···ik β−1) = tr

(
γi1i2···ik

) = 0,

γ
i1i2···ik
ḂA

γ AḂ
j1j2···jm = tr

(
γ i1i2···ik γj1j2···jm

) = 0, if k �= m,

γ
i1i2···ik
ḂA

γ AḂ
j1j2···jk = tr

(
βγ i1i2···ik γj1j2···jk β−1) = tr

(
γ i1i2···ik γj1j2···jk

)

= (−1)
1
2 k(k−1)2νk ! δ[i1[j1

δ
i2
j2

· · · δik]jk],

which follow from the definition of the components of the invariant spintensorsβḂA,

βAḂ , γ i1i2···ik
ḂA

, γ AḂ
j1j2···jk and from relations (1.123).

If the matrix of components of the second-rank spinor ψḂA is Hermitian,

(
ψḂA

)˙= ψȦB,

then, from the Hermitian properties (1.131) and (1.132) of the matrices of com-
ponents of the spintensors βḂA and γ

i1i2···ik
ḂA

it follows that the components of the

tensors H , Hi1i2···ik are real.

1.7 Semispinors in Even-Dimensional Real Spaces

Consider an even-dimensional real vector pseudo-Euclidean space E
q
2ν referred to

an orthonormal basis Эi . Semispinors in the space E
q
2ν are defined by the equalities

ψ = γ2ν+1ψ or ψ = −γ2ν+1ψ, (1.167)

where γ2ν+1 is defined by the second equation in (1.145).

It is easy to see that the matrix γ2ν+1 coincides with the matrix
◦
γ 2ν+1 defined

by Eq. (1.96). Therefore Eqs. (1.167) are identical to Eqs. (1.97) which define
semispinors in the complex Euclidean space E+

2ν .
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Taking the Hermitian conjugate of Eqs. (1.167) and multiplying the result by the
matrix of components of the invariant spinor β, using the equality

γ̇ T
2ν+1 = (−1)qβγ2ν+1β

−1

that follows from (1.128), we obtain that the covariant components of the conjugate
semispinor ψ+ in the space E

q

2ν satisfy the equation

(−1)qψ+ = ±ψ+γ2ν+1. (1.168)

Here, the upper sign corresponds to the first equation in (1.167) and the lower sign
to the second equation in (1.167).

Using the components ψ of an arbitrary spinor in the space E
q

2ν , one can define
two semispinors with components ψ(I) nd ψ(II), calculated in the same basis as ψ:

ψ(I) = 1

2
(I + γ2ν+1)ψ, ψ(II ) = 1

2
(I − γ2ν+1)ψ.

For the covariant components of the conjugate semispinors ψ+
(I ) and ψ+

(I I ), we
have

ψ+
(I ) = 1

2
ψ+[I + (−1)qγ2ν+1

]
, ψ+

(I I ) = 1

2
ψ+[I − (−1)qγ2ν+1

]
.

Let us introduce, in the spinor space, the spinbasis
∗
εA in which the components

of the spintensors γi are defined by the matrices (we assume q < 2ν)

γ2ν =
∥
∥
∥∥

0 I

I 0

∥
∥
∥∥ , γα =

∥
∥
∥∥

0 −iσα

iσα 0

∥
∥
∥∥ , α = 1, 2, . . . , 2ν − 1,

where σα (α = 1, 2,. . . , 2ν−1) are matrices of the order 2ν−1 related to the matrices
◦
σα in (1.99) by the equalities

σ1 = i
◦
σ 1, σ2 = i

◦
σ 2, . . . , σq = i

◦
σq,

σq+1 = ◦
σq+1, σq+2 = ◦

σq+2, . . . , σ2ν−1 = ◦
σ 2ν−1.

Evidently, the matrices σα satisfy the equations

σασβ + σβσα = 2gαβI.

The components of the metric spinor E in the spinbasis
∗
εA coincide with those

of the metric spinor E defined by relations (1.100)–(1.103). The components of
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the invariant spinor β in the spinbasis
∗
εA for even q are specified, according to

definition (1.127), by the Hermitian matrix

β =
∥
∥
∥
∥
β̃ 0
0 −β̃

∥
∥
∥
∥ , (1.169)

where β̃ satisfies the equations

σ̇ T
α = β̃σαβ̃

−1, α = 1, 2, . . . , 2ν − 1.

For odd q , the Hermitian matrix β has the form

β =
∥
∥
∥∥

0 −iβ̃
iβ̃ 0

∥
∥
∥∥ , (1.170)

where β̃ satisfies the equations

σ̇ T
α = −β̃σαβ̃

−1, α = 1, 2, . . . , 2ν − 1.

From the Hermitianity of the matrix β it follows that the matrix β̃ is also
Hermitian. Using definitions (1.133) and (1.134) for β, it is easy to find that for
even and odd q the matrix β̃ may be defined as

β̃ = i
1
2q(q+1)σ[1σ2 · · · σq].

Let us further consider only such orthogonal transformations of bases in the space
E

q

2ν which may be obtained in a continuous way from the identical transformation.
At such transformations of bases in the space E

q

2ν , the corresponding spinor

transformations in the spinbasis
∗
εA have the form

S =
∥
∥
∥
∥
A 0
0 D

∥
∥
∥
∥ . (1.171)

Let us write down Eqs. (1.143) defining the spinor transformations S in the

spinbasis
∗
εA:

−ilα2νσα + l2ν2νI = A−1D,

lαβσα + il2νβI = A−1σβD. (1.172)

For the class of transformations lj i under consideration, all normaliza-
tions (1.144) are equivalent. Let us write out the normalization conditions (1.144)
for even ν:

ε = AT εA, ε = DT εD.
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For odd ν:

ε = AT εD.

Equations (1.146), connected with the real character of the coefficients lj i , for
the considered transformations of bases in the space E

q

2ν have the form

ṠT βS = β.

These equations, in the spinbasis
∗
εA, taking into account the above definition of

β, may be written for even q in the following way:

ȦT β̃A = β̃, ḊT β̃D = β̃.

For odd q:

ȦT β̃D = β̃.

It is easy to see that, in the spinbasis
∗
εA, the components of the second-rank

spinor γ2ν+1 are represented by the matrix

γ2ν+1 =
∥
∥
∥
∥
I 0
0 −I

∥
∥
∥
∥ .

Using this expression for γ2ν+1, from definitions (1.167) we find that, in the

spinbasis
∗
εA, the contravariant components of the semispinors ψ (I ) and ψ (I I ) are

determined by the equalities

ψ(I) =
∥∥
∥
∥
ϕ

0

∥∥
∥
∥ , ψ(II ) =

∥∥
∥
∥

0
χ

∥∥
∥
∥ ,

in which ϕ is a column of the contravariant components of the spinor ψA (A = 1,
2,. . . , 2ν−1), χ is a column of the contravariant components of ψA (A = 1 + 2ν−1,
2 + 2ν−1,. . . , 2ν), and 0 is a column of 2ν−1 zeros.

According to definition (1.169), for the covariant components of the conjugate

semispinors ψ+
(I ) and ψ+

(I I ) in the space E
q
2ν , calculated in the spinbasis

∗
εA, for even

q we have

ψ+
(I )

= ψ̇T
(I )β = (

ϕ̇T β̃, 0T
)
,

ψ+
(I I ) = ψ̇T

(II )β = (
0T , −χ̇T β̃

)
.
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With definition (1.170), for odd q , for the components of ψ+
(I ) and ψ+

(I I ) we find

ψ+
(I ) = (

0T , −iϕ̇T β̃
)
,

ψ+
(I I ) = (

iχ̇T β̃, 0T
)
.

From relation (1.171) it follows that the spinor components ϕ and χ , under
the considered transformations of the basis Эi in the space E

q

2ν , are transformed
separately:

ϕ′ = Aϕ, χ ′ = Dχ.

If l2ν2ν = 1 and lα2ν = 0, it follows from (1.172) that D = A.

1.8 Spinors in Odd-Dimensional Euclidean Spaces

1.8.1 Spinor Representation of the Proper Complex
Orthogonal Group

Consider the odd-dimensional complex Euclidean space E+
2ν−1 referred to the

orthonormal vector basis Эi . Let ‖lj i‖ be a proper orthogonal transformation of
vectors of the basis Эi :

Э′
i = lj iЭj , det ‖lj i‖ = 1. (1.173)

The spinor representation SO+
2ν−1 → {±S} of the proper orthogonal group

SO+
2ν−1 of transformations of the bases Эi in the space E+

2ν−1 is specified by the
group {±S} defined by the equations

lj i
◦
γ j = S−1 ◦

γ iS, ST ES = E, (1.174)

in which the indices i, j take all integer values from 1 to 2ν − 1, and the matrix
◦
γ 2ν−1 is defined by the equality

◦
γ 2ν−1 = iν−1 ◦

γ 1
◦
γ 2 · · · ◦

γ 2(ν−1),

while
◦
γ α (α = 1, 2, . . . , 2(ν− 1)) are matrices of order 2ν−1 satisfying the equation

◦
γ α

◦
γ β + ◦

γ β

◦
γ α = 2δαβI.
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The matrix E in Eqs. (1.174) is defined by the equations

(−1)ν+1 ◦
γ T

i = E
◦
γ iE

−1. (1.175)

The solvability of Eqs. (1.174) with respect to S follows from the subsequent
reasoning.

A first-rank spinor in the odd-dimensional complex Euclidean space E+
2ν−1 is

defined as an invariant geometric object of the form ψ = ±ψAεA, where the pairs
of contravariant components ±ψA and the spinbasis ±{εA} are related to some
orthonormal basis Эi of the space E+

2ν−1, and is transformed under the orthogonal
transformation (1.173) of the bases Эi according to the relations

(±ψB)′ = ±SB
Aψ

A, (±εB)
′ = ±ZA

BεA,

in which the spinor transformations S = ‖SB
A‖ and S−1 = ‖ZA

B‖ are defined by
Eqs. (1.174).

The spinor index juggling is carried out using the metric spinor whose component
matrix E is defined by Eqs. (1.175).11

If, in Eq. (1.175), the matrices
◦
γ i for i = 1, 2,. . . , ν−1 are taken to be symmetric

and for i = ν, ν + 1,. . . , 2(ν − 1) to be antisymmetric, then, for any ν, the metric
spinor E, defined by Eq. (1.175), may be specified by the matrix

E = ◦
γ ν

◦
γ ν+1 · · · ◦

γ 2(ν−1). (1.176)

A direct inspection using the above symmetry properties of
◦
γ i in definition (1.176)

shows that the components matrix of the spinor E possesses the following symmetry
properties:

ET = (−1)
1
2 ν(ν−1)E. (1.177)

Performing calculations similar to those of Sect. 1.1 (see page 18), one can find
that, due to Eqs. (1.175), the following equations also hold:

( ◦
γ i1i2...ik

)T = (−1)kν+ 1
2 k(k+1)E

◦
γ i1i2...ik

E−1, (1.178)

11One could express the idea to define the metric spinor in the space E+
2ν−1 as in the space E+

2ν ,
by Eqs. (1.44), in which i = 1, 2, . . . , 2ν − 1. However, for odd ν, Eq. (1.44) for matrices of order
2ν−1 with i = 1, 2, . . . , 2ν − 1 has no solution since the matrix E of order 2ν−1 is defined by

Eq. (1.44) for i = 1, 2, . . . , 2(ν − 1) up to a factor and is connected with
◦
γ 2ν−1 by the equation

◦
γ T

2ν−1 = E
◦
γ 2ν−1E

−1, which is easily obtained by contracting equations (1.54) for k = 2(ν − 1)
with components of the Levi-Civita pseudotensor εi1i2...ik with respect to the indices i1, i2,. . . , ik .
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in which
◦
γ i1i2...ik

= ◦
γ [i1

◦
γ i2

· · · ◦
γ ik ]. Equations (1.178) imply the symmetry

properties of the spintensors E
◦
γ i1i2...ik

:

(
E

◦
γ i1i2...ik

)T = (−1)kν+ 1
2 [ν(ν−1)+k(k+1)]E ◦

γ i1i2...ik
. (1.179)

The above symmetry properties of the matrices E and E
◦
γ i1i2...ik

are independent

of the specific choice of the matrices
◦
γ i .

The above definition of the spinor representation and spinors in the odd-
dimensional complex Euclidean space E+

2ν−1 may be obtained in the following
way. The space E+

2ν−1 may be considered as a subspace in the complex Euclidean
space E+

2ν , orthogonal to the basis vector Э2ν in E+
2ν . Then the group of orthogonal

transformations of bases Эi in the space E+
2ν−1 is isomorphic to the subgroup of the

group of orthogonal transformations of bases in the space E+
2ν , which is singled out

by the conditions

l2ν2ν = 1, lα2ν = 0.

At proper orthogonal transformations of bases Эi of the Euclidean space E+
2ν ,

for which all these conditions are valid, the spinor transformations S, calculated in

the spinbasis
∗
εA according to Eqs. (1.105) and (1.110), have the form

S =
∥
∥∥
∥
A 0
0 A

∥
∥∥
∥ ,

where the matrix A satisfies Eqs. (1.111) and the normalization conditions (1.108).
Equations (1.111) and (1.108) for D = A, up to notations (

◦
γ i → ◦

σ i, E →
ε, S → A), coincide with Eqs. (1.174). Thus the components of a first-rank spinor
in the space E+

2ν−1 are transformed as nonzero components of semispinors in the

space E+
2ν in the spinbasis

∗
εA under proper orthogonal transformations of the

subspace orthogonal to the basis vector Э2ν in E+
2ν−1. This implies the solvability

of Eqs. (1.174).

1.8.2 Spinor Representation of the Full Orthogonal Group

The spinor representation of the full orthogonal group O+
2ν−1 of transformations

of the bases Эi of the odd-dimensional complex Euclidean space E+
2ν−1 may be
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defined by the equations12

lj i
◦
γ j = S−1 ◦

γ iS signΔ, ST ES = E, (1.180)

or by the equations

lj i
◦
γ j = S−1 ◦

γ iS signΔ, ST ES = E signΔ. (1.181)

Under the proper orthogonal transformations lj i , Eqs. (1.180) and (1.181) are
identical to Eqs. (1.174). Let us calculate the spinor transformations S, correspond-
ing to the full reflection transformation Э′

i = −Эi for i = 1, 2,. . . , 2ν − 1.
Equations (1.180) for S give in this case

◦
γ i = S−1 ◦

γ iS, ST ES = E. (1.182)

It is easy to see that Eqs. (1.182) have the solution

S = ±I. (1.183)

Since any improper orthogonal transformation may be represented in the form
of a product of some proper orthogonal transformation and a full reflection trans-
formation, from (1.183) it follows that the set of spinor transformations defined by
Eqs. (1.180) that corresponds to all improper orthogonal transformations coincides
with the group of spinor transformations, corresponding to the proper orthogonal
group SO+

2ν−1. Thus the spinor representation of the full orthogonal group O+
2ν−1,

defined by Eqs. (1.180), is not exact.
Equations (1.181), which, for the full reflection transformation Э′

i = −Эi , are
written in the form

◦
γ i = S−1 ◦

γ iS, ST ES = −E,

define the spinor transformation S = ±iI .

12The equations lj i
◦
γ j = S−1 ◦

γ iS have no solution for S on the full orthogonal group O+
2ν−1.

Indeed, for instance, for the reflection transformation of a single vector from the basis Э′
2ν−1 =

−Э2ν−1, these equations give

S
◦
γ 2ν−1 = − ◦

γ 2ν−1S, S
◦
γ α = ◦

γ αS, α = 1, 2, . . . , 2(ν − 1). (*)

From the second equation in (*) it follows that S is proportional to the unit matrix S = λI , which,
for λ �= 0, contradicts the first equation.
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1.8.3 Connection Between Second-Rank Spinors and Tensors
in an Odd-Dimensional Space E+

2ν−1

According to Eqs. (1.24) and (1.25), a second-rank spinor in the space E+
2ν−1 is

equivalent to a system of tensors, consisting of a vector and odd-rank antisymmetric
tensors

F = {
F i, F i1i2i3 , . . . , F i1i2i3...i2ν−1

}
,

or to a system of tensors consisting of a scalar and even-rank anti-symmetric tensors:

F = {
F, F i1i2, . . . , F i1i2...i2(ν−1)

}
.

Raising the index A in Eqs. (1.24) and (1.25) with the aid of the metric spinor
E, one can write down a relationship between the contravariant components of the
second-rank spinor ψBA and the even-rank tensors F in the form

ψBA = 1

2ν−1

[

(−1)
1
2 ν(ν−1)F eBA +

ν−1∑

k=1

1

(2k) !F
i1i2···i2k ◦

γ BA
i1i2···i2k

]

, (1.184)

where

F = eBAψ
BA = ψA

A,

F i1i2···i2k = ◦
γ

i1i2···i2k
BA ψBA = (−1)k

◦
γ A

B
i1i2···i2kψB

A.

A relationship between the components of a second-rank spinor and the odd-rank
tensors F has the form

ψBA = 1

2ν−1

ν−1∑

k=0

1

(2k + 1) !F
i1i2···i2k+1

◦
γ BA

i1i2···i2k+1
. (1.185)

Here,

F i1i2···i2k+1 = (−1)ν+1 ◦
γ

i1i2···i2k+1
BA ψBA = (−1)k

◦
γ A

B
i1i2···i2k+1ψB

A.

1.8.4 Spinors in Odd-Dimensional Pseudo-Euclidean Spaces

Let us now consider an odd-dimensional real pseudo-Euclidean space E
q
2ν−1 of

index q (q < 2ν − 1), referred to an orthonormal basis Эi , in which the first q
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vectors are imaginary-unit, while the remaining 2ν − q − 1 vectors are unit:

(
Эi ,Эi

) = −1 for i = 1, 2, . . . , q,
(
Эi ,Эi

) = 1 for i = q + 1, q + 2, . . . , 2ν − 1,
(
Эi ,Эj

) = 0 for i �= j.

A spinor representation of the group SO
q
2ν−1 of proper pseudo-orthogonal

transformations

Э′
i = lj iЭj , det ‖lj i‖ = 1,

is defined by the equations

lj iγj = S−1γiS, ST ES = E,

in which the matrix of metric spinor components E is defined by Eqs. (1.175), while

the matrices γj are connected with
◦
γ j by the relations

γj = i
◦
γ j for j = 1, 2, . . . , q,

γj = ◦
γ j for j = q + 1, q + 2, . . . , 2ν − 1.

The reality condition for the coefficients of the pseudo-orthogonal transformation
lj i leads to the existence, in E

q

2ν−1, of a spinor β which is invariant with respect to
proper pseudo-orthogonal transformations of the bases Эi :

ṠT βS = β,

The matrix of its components is determined by the equation

γ̇ T
i = (−1)qβγiβ−1.

In the spinbasis in which the matrices γj satisfy the conditions

γ T
j = γj for j = 1, 2, . . . , ν − 1,

γ T
j = −γj for j = ν, ν + 1, . . . , 2(ν − 1),

γ̇ j = −γ T
j for j = 1, 2, . . . , q,

γ̇ j = γ T
j for j = q + 1, q + 2, . . . , 2(ν − 1),
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the component matrix of β may be determined from the relation

β = i
1
2q(q+1)γ[1γ2 · · · γq].

In space with a definite metric E0
2ν−1, if all matrices γi are Hermitian, γ̇ T

i = γi ,
the equality γiβ = βγi holds, and β may be defined as the unit matrix, β = I .

Using the invariant spinor β in the space E
q
2ν−1, the conjugate spinors are defined

by their covariant components ψ+
A , whose row is denoted by the symbol ψ+:

ψ+ = ψ̇T β. (1.186)

From the results of Sect. 1.7 it follows that the components of conjugate
spinors introduced in this way are transformed in E

q

2ν−1 as nonzero components

of conjugate semispinors in E
q
2ν in the spinbasis

∗
εA under proper orthogonal

transformations of the basis in the subspace orthogonal to the basis vector Э2ν in
E

q
2ν .
In the space E

q

2ν−1, one can consider spinors with the components ψA, ψA,
transformed with the aid of the matrices S and S−1, and spinors defined by
the components ψȦ, ψȦ with dotted indices, transformed with the aid of the
complex-conjugate matrices Ṡ, Ṡ−1. A second-rank spinor in the space E

q
2ν−1,

with components ψḂA, having one dotted index, may be expanded in the system
of invariant spintensors γi1i2...i2k β

−1 with an even number of indices:

ψḂA = 1

2ν−1

(

HβAḂ +
ν−1∑

k=1

ik(2k+1)

(2k) ! Hi1i2···i2k γ AḂ
i1i2···i2k

)

, (1.187)

or in the system of invariant spintensors γi1i2...i2k+1β
−1 with an odd number of

indices:

ψḂA = 1

2ν−1

ν−1∑

k=0

i(k−1)(2k+1)

(2k + 1) ! Hi1i2···i2k+1γ AḂ
i1i2···i2k+1

. (1.188)

The components of antisymmetric tensors Hi1i2...in and the invariant H in
Eqs. (1.187) and (1.188) are defined by the relations

H = βḂAψ
ḂA, H i1i2...in = i

1
2 n(n+1)γ

i1i2...in

ḂA
ψḂA,

obtained in the same way as in the corresponding formulae for the space E
q
2ν .
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1.9 Representation of Spinors by Complex Tensors

1.9.1 Equivalence of Geometric Objects in Euclidean Spaces

Let O+
n → S = ‖SBA‖ be a certain representation of the orthogonal group O+

n

of transformations of orthonormal bases Эi of the Euclidean space E+
n , acting in

the space of the variables a1, a2, . . . , aN . In the Euclidean space E+
n , a geometric

object is specified if, in each orthonormal basis Эi of the space E+
n , a system of

components a1, a2, . . . , aN is specified which are transformed with the aid of the
group S in a transition from one orthonormal basis Эi to another orthonormal basis
Э′

i in the space E+
n .

This means that if, in an orthonormal basis Эi of the space E+
n , the components

aB (B = 1, 2, . . . , N) are specified, then, in the basis Э′
i , obtained from Эi by the

orthogonal transformation

Э′
i = lj iЭj , ‖lj i‖ ∈ O+

n ,

the geometric object is defined by the components (aB)′, calculated by the formula

(aB)′ = SBCaC,

where the coefficients ‖SBC‖ correspond to the transformation ‖lj i‖ under the
mapping O+

n → S.

Definition Two geometric objects A1 and A2 in the Euclidean space E+
n are

equivalent, A1 ∼ A2, if, in each orthonormal basis Эi of the space E+
n , there exists

a one-to-one correspondence A1 = f (A2) between the components of the objects
A1 and A2, which is invariant under the choice of the basis Эi .

Geometric objects and their equivalence are defined in pseudo-Euclidean spaces
in a similar way.

Evidently, the above definition of equivalent geometric objects possesses the
properties of reflexivity,

A ∼ A,

symmetry,

A1 ∼ A2 ⇒ A2 ∼ A1,

and transitivity,

A1 ∼ A2, A2 ∼ A3 ⇒ A1 ∼ A3.
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Thus the definition introduced possesses all properties of the equivalence
relation.

According to the definition, knowledge of the components of a geometric object
in any orthonormal basis Эi in E+

n makes it possible to calculate the components
of an equivalent geometric object. Therefore it makes quite the same effect whether
one uses the components of an object A1 or those of an object A2 equivalent to
A1. Meanwhile, the components of two equivalent geometric objects, according to
the above definition, may be transformed by essentially different, mutually non-
equivalent representations of the transformation group of the bases Эi .

As a simple example of equivalent geometric objects, one can take the second-
rank spinor Ψ and the systems of tensors F in Euclidean spaces, whose connection
between the components (which is one-to-one and, in this example, linear) is given
by the equalities (1.94) and (1.95).

A classical and simple example of equivalent geometric objects in the sense of
the above definition is given by an axial vector aiЭi and an antisymmetric second-
rank tensor in three-dimensional space aijЭiЭj (aij = −aji), whose components
in an orthonormal basis Эi are connected by the one-to-one relations

a1 = a23, a2 = a31, a3 = a12,

which are invariant with respect to the choice of an orthonormal basis Эi . Unlike
the previous example, in this case, the components of the equivalent objects ai , aij

are transformed by essentially different (non-equivalent) representations O3 → O3
and O3 → O3 × O3.

1.9.2 Connection Between First- and Second-Rank Spinors

Consider an arbitrary square complex matrix ‖ψBA‖ of order r . Evidently, if the
matrix elements ψBA are represented in the form of products of complex numbers
ψA,

ψBA = ψBψA, (1.189)

then ψBA satisfy the equations

ψAB = ψBA, ψABψCD = ψBCψDA = ψBDψAC. (1.190)

Among Eqs. (1.190), the following r(r − 1) equations may be taken as indepen-
dent ones:

ψAB = ψBA, ψAAψBC = ψABψAC (ψAA �= 0; B,C �= A).
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Indeed, all Eqs. (1.190) may be obtained from these ones. Assuming ψEE �= 0,
we have

ψABψCD = ψEAψEB

ψEE

ψECψED

ψEE
= ψEAψEC

ψEE

ψEBψED

ψEE
= ψACψBD,

ψABψCD = ψEAψEB

ψEE

ψECψED

ψEE
= ψEAψED

ψEE

ψEBψEC

ψEE
= ψDAψBC.

Reversely, if the matrix elements ψBA satisfy Eqs. (1.190), then there exists a set
of r complex numbers ψA, defined up to a common sign, such that ψBA = ψBψA.
Indeed, if all matrix elements ‖ψBA‖ are equal to zero, ψBA = 0, we put ψA = 0.
If there is at least one nonzero matrix element ‖ψBA‖, so that ψBA �= 0, then we
put

ψA = ψBAηB

±√ψCDηCηD

, (1.191)

where ηC (C = 1, 2,. . . , r) are arbitrary, generally complex numbers satisfying the
condition ψCDηCηD �= 0. In Eq. (1.191), summing over the indices B, C, D is
performed from 1 to r .

It is easy to see that if ψBA in Eq. (1.191) satisfy Eqs. (1.190), then the quantities
ψA defined by Eq. (1.191) satisfy (1.189).

Due to Eqs. (1.189), definition (1.191) of the quantities ψA is independent of
the choice of the numbers ηC . Indeed, if the inequalities ψCDηCηD �= 0 and
ψCDη∗

Cη∗
D �= 0 hold, then, using Eqs. (1.190), we obtain

ψA = ψBAηB

±√ψCDηCηD

= ψMNη∗
Mη∗

N · ψBAηB

±
√(

ψMNη∗
Mη∗

N

)2
ψCDηCηD

= ψNAη∗
N · ψBMηBη∗

M

±
√
ψMNη∗

Mη∗
N

(
ψCDηCη

∗
D

)2
= ψNAη∗

N

±
√
ψMNη∗

Mη∗
N

.

If, in Eq. (1.191), we define the numbers ηC by the equality ηC = δBC , where
B is a fixed number and δBC are the Kronecker delta (i.e., all numbers ηC except
one are zero, while the number ηB labeled B is equal to unity) and ψBB �= 0, then
Eq. (1.191) is rewritten in a simpler form,

ψA = ψBA

±√ψBB
, (1.192)

without summing over the index B. Due to independence of definition (1.191) of
the choice of ηC , Eqs. (1.191) and (1.192) determine the same dependence ψA on
ψBA.
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It is easy to show that if the components ψBA in the equality (1.191) are
transformed by the law

ψBA → (
ψBA

)′ = SB
CS

A
MψCM, (1.193)

where SB
C define an arbitrary complex square nondegenerate matrix of order r , then

the quantities ψA, defined according to (1.191), are transformed in the following
way:

ψA → (
ψA

)′ = ±SA
BψB. (1.194)

Indeed, since the right-hand side of Eq. (1.191) is insensitive to the choice of the
numbers ηB , in (1.191) one can put η′

B = ZA
BηA, where ZA

B are elements of the
inverse matrix S−1:

ψA = ψBAηB

±√ψCDηCηD

= ψBAη′
B

±
√
ψCDη′

Cη′
D

.

Using this equality, we find for the transformed quantities ψA:

(ψA)′ = (ψBA)′η′
B

±
√
(ψCD)′η′

Cη
′
D

= SA
MψBMηB

±√ψCDηCηD

= ±SA
MψM.

Thus the geometric object, whose components ψBA satisfy Eqs. (1.190) and are
transformed with the aid of the group S × S by the law (1.193), is equivalent to a
two-valued object with components {±ψA}, transformed with the aid of the factor
group {±S} = S/ ± I by the law (1.194).

In particular, it follows from the above-said that, in Euclidean spaces, a second-
rank spinor with components ψBA, satisfying Eqs. (1.190), is equivalent to a first-
rank spinor with the components ±ψA.13

1.9.3 Equivalence of a First-Rank Spinor ψ to a Set of
Complex Tensors C

If, in an even-dimensional complex Euclidean space E+
2ν , the components of a

second-rank spinor ψBA are not arbitrary but satisfy Eqs. (1.190) (and consequently
are represented in the form of products of components of a first-rank spinor,ψBψA),

13By definition, the components of the second-rank spinor ψBA are always defined with a sign,
although they can be products of components of first-rank spinors defined up to a common sign.
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then we will write Eq. (1.94) in the form

ψBA = ψBψA = 1

2ν

(

CeBA +
2ν∑

k=1

(−1)k

k ! Ci1i2···ik ◦
γ BA

i1i2···ik

)

. (1.195)

The same for the components of a spinor ψBA = ψBψA in an odd-dimensional
complex Euclidean space E+

2ν+1:

ψBA = ψBψA = 1

2ν

(

CeBA +
ν∑

k=1

1

(2k) !C
i1i2···i2k ◦

γ BA
i1i2···i2k

)

, (1.196)

or

ψBA = ψBψA = (−1)ν

2ν

ν∑

k=o

1

(2k + 1) !C
i1i2···i2k+1

◦
γ BA

i1i2···i2k+1
. (1.197)

In equalities (1.195)–(1.197), the components of the tensors C are defined in the
following way:

C = eBAψ
BψA = ψT Eψ,

Ci1i2···ik = ◦
γ

i1i2···ik
BA ψBψA = ψT E

◦
γ

i1i2···ik
ψ. (1.198)

From the symmetry properties (1.56) of the components of E and E
◦
γ i1i2···ik , for

the tensors C in an even-dimensional space E+
2ν it follows:

C = 0, if
1

2
ν(ν + 1) is odd,

Ci1i2···ik = 0, if
1

2
[ν(ν + 1) + k(k + 1)] is odd.

For the tensors C in an odd-dimensional space E+
2ν+1, on the basis of the symme-

try properties (1.177) and (1.179), we have (the identities (1.177) and (1.179) are
written for the space E+

2ν−1, therefore, in application to the present case, one should
replace in them ν → ν + 1)

C = 0, if
1

2
ν(ν + 1) is odd,

Ci1i2···ik = 0, if
1

2
[ν(ν + 1) + k(k − 1)] + kν is odd.

By virtue of definitions (1.198), the components of the tensors C satisfy 2ν(2ν −
1) independent bilinear equations. To obtain such equations in the even-dimensional
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space E+
2ν , we multiply Eqs. (1.195) written for the indices B, A and C, D:

22νψBAψCD =
2ν∑

m=0

2ν∑

k=0

(−1)k+m

m ! k ! Ci1i2···ikCj1j2···jm ◦
γ BA

i1i2···ik
◦
γ CD

j1j2···jm. (1.199)

Contracting equation (1.199) with respect to the indices A, B, C, D with

components of the spintensors
◦
γ

n1...nl

AC

◦
γ

s1...sq

DB , we obtain:

22νCn1···nlCs1···sq =
2ν∑

m=0

2ν∑

k=0

(−1)k+m

m ! k ! Ci1···ikCj1···jm

× tr
( ◦
γ i1···ik

◦
γ n1···nl

◦
γ j1···jm

◦
γ s1···sq

)
. (1.200)

Here and henceforth, to simplify the notation, we omit the tensor indices with

zero number, so that Ci0 = C, and it is supposed that
◦
γ k0 = I and

◦
γ i0

= I .
Let us note that Eqs. (1.200), connecting the components of the tensors C, may
also be obtained by contracting the identities (1.20) with the spinor components
ψMψEψDψA with respect to the indices M , E, D, A.

In the same way one obtains bilinear equations connecting the components of
even-rank tensors C in odd-dimensional spaces E+

2ν+1:

22νCn1···nlCs1···sq =
ν∑

m=0

ν∑

k=0

1

(2m) ! (2k) !C
i1···i2kCj1···j2m

× tr
( ◦
γ i1···i2k

◦
γ n1···nl

◦
γ j1···j2m

◦
γ s1···sq

)
(1.201)

and equations for the components of odd-rank tensors C in odd-dimensional spaces
E+

2ν+1:

22νCn1···nlCs1···sq =
ν∑

m=0

ν∑

k=0

1

(2m + 1) ! (2k + 1) !

× Ci1···i2k+1Cj1···j2m+1 tr
( ◦
γ i1···i2k+1

◦
γ n1···nl

◦
γ j1···j2m+1

◦
γ s1···sq

)
. (1.202)

Evidently, the set of tensors C in the even-dimensional space E+
2ν , satisfying

Eqs. (1.200) (or Eqs. (1.201) or (1.202) in the odd-dimensional space E+
2ν+1), is

equivalent to a second-rank spinor with components ψBA in the space E+
2ν (or

E+
2ν+1), satisfying Eqs. (1.190).
Thus a second-rank spinor with components ψBA satisfying Eqs. (1.190) is, on

the one hand, equivalent to the set of tensors C, and, on the other hand, it is
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equivalent to the first-rank spinor ψ = ±ψAεA. Therefore, due to transitivity of
the equivalence relation, the following theorem is valid.

Theorem ([75]) The first-rank spinor ψ = ±ψAεA in the complex Euclidean
space E+

2ν (or in the space E+
2ν+1) with the components ψA, defined up to a

common sign, is equivalent to a set of complex tensors C, satisfying 2ν(2ν − 1)
independent bilinear equations in (1.200) (or Eqs. (1.201), (1.202) in E+

2ν+1). The
one-to-one relation between the components of the tensors C and those of the spinor
±ψA, invariant under the choice of the orthonormal basis of Euclidean space, is
performed, in the even-dimensional space E+

2ν , by Eqs. (1.191), (1.195) and (1.198),
and, in the odd-dimensional space E+

2ν+1, by Eqs. (1.191), (1.196) and (1.198) or
by (1.191), (1.197) and (1.198).

In real pseudo-Euclidean spaces E
q

2ν , the components of the tensors C corre-
sponding to a second-rank spinor with the componentsψBA, satisfying Eqs. (1.190),
will be defined in an orthonormal basis Эi in the space E

q

2ν by Eqs. (1.198), in which

the spintensors
◦
γ i1i2···im are replaced by the spintensors γ i1i2···im = γ [i1γ i2 · · · γ im]:

C = ψT Eψ,

Ci1i2···im = ψT Eγ i1i2···imψ. (1.203)

In this case, Eqs. (1.195)–(1.197) and (1.200)–(1.202) remain valid if the

spintensors
◦
γ i1i2···im are also replaced in them by the spintensors γ i1i2···im .

1.10 Representation of Spinors by Real Tensors

Consider an r-dimensional complex square matrix ‖ψḂA‖. Suppose that the
components ψḂA can be presented in the form ψḂA = ψ̇BψA. Then ψḂA satisfy
the equations

(
ψḂA

)˙= ψȦB, ψȦBψĊD = ψȦDψĊB, (1.204)

and the inequality ψȦA � 0 is also valid. Among Eqs. (1.204), the following (r−1)2

equations (counting complex equations twice) are independent:

(
ψḂA

)˙= ψȦB, ψȦAψĊD = ψȦDψĊA. (1.205)

Indeed, all Eqs. (1.204) follow from (1.205):

ψȦBψĊD = ψȦEψĖB

ψĖE

ψĊEψĖD

ψĖE
= ψȦDψĖE

ψĖE

ψĊBψĖE

ψĖE
= ψȦDψĊB.
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If Eqs. (1.205) hold, then, from the condition ψȦA � 0, for some particular
value of the index A, it follows that, for any complex numbers ηC (C = 1, 2,. . . r),
the following condition is valid ψĊDη̇CηD � 0. Indeed, multiplying the second
equation (1.205) by the numbers ηD and η̇C and then summing over the indices C

and D from 1 to r , we obtain

ψȦAψĊDη̇CηD = ψȦDηDψĊAη̇C.

Substituting, in the right-hand side of this equality, the quantities ψĊA according
to the first equation (1.205), we find:

ψȦAψĊDη̇CηD = ψȦDηD

(
ψȦCηC

)˙� 0.

Hence it is evident that if ψȦA � 0, then also ψĊDη̇CηD � 0.
Evidently, if the components ψA define the matrix ‖ψḂA‖, then the components

ψA exp(iϕ) (ϕ is an arbitrary real number), and only these components, define the
same matrix ‖ψḂA‖.

Conversely, if some components ψḂA (Ḃ, A = 1, 2, . . . , r) satisfy Eqs. (1.204),
and also the inequality ψȦA � 0 holds, then there exists a set of components ψA,
defined up to a common factor exp(iϕ), such that ψḂA = ψ̇BψA.

Indeed, if all elements of the matrix ‖ψḂA‖ are zero, we put ψA = 0.
If there is at least one nonzero element of the matrix ‖ψḂA‖, i.e., ψḂA �= 0, then

we put

ψA = ψḂAη̇B√
ψĊDη̇CηD

, (1.206)

where ηC (C = 1, 2,. . . , r) are arbitrary complex numbers satisfying the condition
ψĊDη̇CηD �= 0.

Due to Eqs. (1.204), the numbers ψA calculated by the formula (1.206), corre-
sponding to any different numbers ηC , differ by the factor exp(iϕ), where ϕ is a real
number. Indeed, assuming that ψĊDη̇CηD �= 0 and ψṀN η̇∗

Mη∗
N �= 0 (ηC �= η∗

C ), we
obtain

ψA = ψḂAη̇B√
ψĊDη̇CηD

= ψṀN η̇∗
Mη∗

NψḂAη̇B√(
ψṀN η̇∗

Mη∗
N

)2
ψĊDη̇CηD

= ψṀAη̇∗
M√

ψṀNη̇∗
Mη∗

N

ψḂN η̇Bη∗
N√

ψṀN η̇∗
Mη∗

NψĊDη̇CηD

. (1.207)
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Since the equality

mod
ψḂN η̇Bη

∗
N√

ψṀN η̇∗
Mη∗

NψĊDη̇CηD

= 1,

is valid, one can put

ψḂN η̇Bη∗
N√

ψṀN η̇∗
Mη∗

NψĊDη̇CηD

= exp(iϕ),

and equality (1.207) can be continued:

ψA = ψṀAη̇∗
M√

ψṀN η̇∗
Mη∗

N

exp(iϕ).

Evidently, the set {ψA}, corresponding to all numbers ηC in Eq. (1.206), has the
form ψA exp iϕ, where ϕ is an arbitrary real number. If, in Eq. (1.206), we put
ηC = δBC exp(iϕ), then Eq. (1.206) takes a form more convenient for a practical
calculation of the components ψA, corresponding to given ψḂA:

ψA = ψḂA

√
ψḂB

exp(iϕ).

Here, no summing is performed over the index B.
Evidently, in the transformation ψḂA → ṠB

CS
A
MψĊM , where the coefficients

SA
M define a nondegenerate matrix, the whole set {ψA exp(iϕ)}, corresponding to

given ψḂA and all ϕ by formula (1.206), is transformed as follows:

{ψA exp iϕ} → SA
B{ψB exp(iϕ)}.

Thus specifying the components of the object ψḂA transformed with the aid of
the group Ṡ × S, satisfying Eqs. (1.204) and the condition ψȦA � 0, and specifying
the argument ϕ0 of one of the components ψA entirely determine the components
of the object ψA, transformed with the aid of the group S.

If the componentsψḂA define, in the pseudo-Euclidean space E
q

2ν , a second-rank

spinor with one dotted index and satisfy Eqs. (1.204) and the condition ψȦA � 0,
then we will write Eq. (1.165) in the form

ψḂA = 1

2ν

(
DβAḂ +

2ν∑

k=1

1

k ! i
1
2 k(k−3)Di1i2···ik γ AḂ

i1i2···ik

)
. (1.208)
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Also, in the odd-dimensional space E
(q)

2ν+1, for the components ψḂA we have

ψḂA = 1

2ν

(
DβAḂ +

ν∑

k=1

ik(2k+1)

(2k) ! Di1i2···i2k γ AḂ
i1i2···i2k

)
, (1.209)

or

ψḂA = 1

2ν

ν∑

k=0

i(k−1)(2k+1)

(2k + 1) ! Di1i2···i2k+1γ AḂ
i1i2···i2k+1

. (1.210)

In Eqs. (1.208)–(1.210), the real components of the tensors D are defined by the
relations

D = βḂAψ̇
BψA,

Di1i2···ik = i
1
2 k(k+1)γ

i1i2···ik
ḂA

ψ̇BψA. (1.211)

It is also convenient to write down definitions (1.211) of the components of the
tensors D in terms of the components of the conjugate spinor ψ+ = ‖ψ+

A ‖:

D = eBAψ
+AψB = ψ+ψ, (1.212)

Di1i2...ik = i
1
2 k(k+1)γ B

A
i1i2···ikψ+

B ψA = i
1
2 k(k+1)ψ+γ i1i2···ikψ.

If the contravariant components of the second-rank spinor ψḂA satisfy
Eqs. (1.204), then the corresponding components of the tensors D satisfy a set
of real equations, which, in the space E

q

2ν , may be obtained by multiplying
Eqs. (1.208), written for the indices A, B and C, D, and by contracting the resulting
equation with components of the spintensors γ n1···npγ s1···sr :

22νDn1···npDs1···sr =
2ν∑

k=0

2ν∑

m=0

ig1

m ! k !D
i1···ikDj1···jm

× tr
(
γi1···ik γ n1···npγj1···jmγ s1···sr ) . (1.213)

Here,

g1 = 1

2
[p(p + 1) + r(r + 1) + m(m − 3) + k(k − 3)].

In a similar way one can also obtain bilinear equations for the components of the
tensors D in odd-dimensional spaces E

q

2ν+1.
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It is clear from the above-said that specifying the real tensors D satisfying
Eqs. (1.213) and the argument ϕ0 of one of the components ψA determines a spinor
entirely. Hence it follows that spinor equations may be equivalently written in terms
of the components of the tensors D and ϕ0. Excluding ϕ0 from these equations, one
can obtain a closed set of equations in terms of the components of real tensors D.

The components of the tensors C and D in the pseudo-Euclidean space E
q
2ν are

also connected by crossed equations, which are obtained by multiplying (1.195),
written for the indices A and B, by Eq. (1.208), written for the indices C and D, and
by contracting the result obtained with the components of the spintensors γ :

22νCs1···spDn1···nl =
2ν∑

k=0

2ν∑

m=0

ig2

m ! k !C
i1···ikDj1···jm

× tr
(
γi1···ik γ s1···spγj1···jmγ n1···nl

)
.

Here, the coefficient g2 is defined by the relation

g2 = 1

2
[m(m − 3) + l(l + 1)] + k(k + 3).

Equations of another type are obtained by multiplying Eqs. (1.195) by complex-
conjugate equations (1.195) and subsequent contraction with components of the
spintensors γ :

22νDs1···spDn1···nl =
2ν∑

k=0

2ν∑

m=0

ig3

m ! k !C
i1···ik Ċj1···jm

× tr
(
γi1···ik γ n1···nl γj1···jmγ s1···sp) . (1.214)

Here,

g3 = 1

2
[p(p + 1) + 3l(l + 1)] + ν(ν + 1) + 2(k + m) + q(q + 1) + 2ν(ν − q).

Equations (1.214) determine the components of the real tensors D in terms of the
components of the complex tensors C.

To calculate the components of the spinor corresponding to the tensors C and D,
besides Eqs. (1.191) and (1.206), one can also use the equation

ψA = ψḂA

±
√(

ψBB
)˙
, or ψA = ψḂAη̇B√(

ψCDηCηD

)˙
(1.215)
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and relations (1.195)–(1.197) and (1.208)–(1.210), determining the components of
the second-rank spinor ψBA, ψḂA in terms of the components of the tensors C and
D.

Due to Eqs. (1.190) and (1.204), the right-hand side of the first formula in (1.215)
does not depend on the fixed value of the index B (on the quantities ηC in the second
formula (1.215)).

1.11 Tensor Representation of Semispinors in Euclidean
Spaces

Let us first consider semispinors in the even-dimensional complex Euclidean space
E+

2ν . Evidently, relations (1.191), (1.195) and (1.198) which realize the one-to-one
connection between the components of the tensors C and those of the spinor ψA,
are also valid in the case that the components ψA define a semispinor in the space
E+

2ν . However, the tensors C, corresponding to semispinors, have a specific form,
satisfying some additional linear equations.

To find these equations, let us replace in Eqs. (1.198) the components of
the spinor ψA according to Eq. (1.97)14 (to simplify the formulae, we do the
calculations in a matrix form):

Ci1i2···ik = ψT E
◦
γ i1i2···ikψ = ±ψT E

◦
γ i1i2···ik ◦

γ 2ν+1ψ. (1.216)

To calculate the products of the matrices
◦
γ i1i2···ik ◦

γ 2ν+1 in this equation, we
contract the identities (1.16e) and (1.16f) with components of the Levi-Civita
pseudotensor with respect to the indices i1i2 · · · i2ν+1. We obtain:

◦
γ i1i2···ik ◦

γ 2ν+1 = (−1)
1
2 k(k−1) iν

(2ν − k) !
◦
εi1...ik ik+1...i2ν

◦
γ ik+1...i2ν ,

◦
γ 2ν+1

◦
γ i1i2···ik = (−1)

1
2 k(k+1) iν

(2ν − k) !
◦
εi1...ik ik+1...i2ν

◦
γ ik+1...i2ν . (1.217)

Substituting, in Eq. (1.216), the product of the spintensors γ according to the first
equality in (1.217), we continue Eq. (1.216):

Ci1i2···ik = ±(−1)
1
2 k(k−1) iν

(2ν − k) !
◦
εi1...ik ik+1...i2ν ψT E

◦
γ ik+1...i2νψ

= ±(−1)
1
2 k(k−1) iν

(2ν − k) !
◦
εi1...ik ik+1...i2νCik+1...i2ν .

14Here and in the subsequent equations, the upper sign corresponds to the first equation (1.97) and
the lower sign to the second equation (1.97).
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Thus the components of the tensors C corresponding to semispinors in the
complex Euclidean space E+

2ν satisfy the linear equation

Ci1i2···ik = ± iν+k(k+1)

(2ν − k) !
◦
εi1...ik ik+1...i2νCik+1...i2ν . (1.218)

In the left-hand side of this equation, the components Ci1i2···ik are equal to zero if
the number 1/2[ν(ν+1)+k(k+1)] is odd. The rank of the tensor with components
Cik+1...i2ν is equal to 2ν − k, therefore the components Cik+1...i2ν in the right-hand
side of Eq. (1.218) are zero if the number 1/2[ν(ν + 1) + (2ν − k)(2ν − k + 1)] =
1/2[ν(ν − 1) + k(k − 1)] is odd. Thus for the tensors C, defined by semispinors in
the space E+

2ν , we have

Ci1i2···ik = 0, if one of the numbers
1

2
[ν(ν + 1) + k(k + 1)],

1

2
[ν(ν − 1) + k(k − 1)] is odd.

Now consider semispinors in the real pseudo-Euclidean space E
q

2ν . The complex
tensors C, defined by semispinors in the space E

q

2ν , satisfy the same equations as
those for semispinors in the complex space E+

2ν . The real tensors D, defined by
semispinors in the space E

q

2ν , also satisfy additional linear equations. Let us find
these equations.

Substituting, in definition (1.212) for the component of the tensors D, the
components of the spinor ψ according to Eq. (1.167) and the components of the
conjugate spinor ψ+ according to Eq. (1.168), we obtain:

Di1i2...ik = i
1
2 k(k+1)ψ+γ i1i2···ikψ = (−1)q i

1
2 k(k+1)ψ+γ2ν+1γ

i1i2···ik γ2ν+1ψ.

It is easy to see that, from the identities (1.217) and from the definition of the

component matrix of the spintensor
◦
γ 2ν+1 = γ2ν+1, it follows

γ2ν+1γ
i1i2···ik γ2ν+1 = (−1)kγ i1i2···ik .

Taking into account the latter identity, we find for the components of the tensor
D:

Di1 i2...ik = (−1)k+q i
1
2 k(k+1)ψ+γ i1i2···ikψ = (−1)k+q Di1 i2...ik .

Hence it follows that the components of the real tensors Di1i2...ik defined by
semispinors are equal to zero if the number k + q is odd.
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Let us now substitute the components of the spinor ψ in the definition (1.212)
according to Eq. (1.167):

Di1i2...ik = ±i
1
2 k(k+1)ψ+γ i1i2···ik γ2ν+1ψ.

Taking into account the first identity (1.217), we obtain for Di1 i2...ik :

Di1i2...ik = ±(−1)
1
2 k(k−1) iν−q+ 1

2 k(k+1)

(2ν − k) ! εi1...ikik+1...i2νψ+γik+1...i2νψ

= ± 1

(2ν − k) ! (−1)
1
2 (k

2−q)+ν(k+1)εi1...ik ik+1...i2νDik+1...i2ν .

Thus the components of the real tensors D corresponding to semispinors satisfy
the following additional linear equations:

Di1i2...ik = 0, if the number k + q is odd,

Di1i2...ik = ± 1

(2ν − k) ! (−1)
1
2 (k

2−q)+ν(k+1)εi1...ik ik+1...i2νDik+1...i2ν .

1.12 Representation of Two Spinors by Sets of Tensors

If the components ψBA of the complex square matrix ‖ψBA‖ of order r are
represented as products, ψBA = χBψA, then it is easy to see that ψBA satisfy
the equations

ψABψCD = ψBCψDA, (1.219)

among which there are (r − 1)2 independent equations. If ψAA �= 0, then the
following equations in (1.219) are independent:

ψAAψCD = ψACψDA for C �= A, A �= D.

Conversely, if Eqs. (1.219) hold, there is a set of components χB , defined up to
simultaneous multiplication of all components χB by an arbitrary nonzero complex
number α, and a set of components ψA, defined up to simultaneous multiplication
of all components ψA by 1/α, such that the equalities ψBA = χBψA hold. The
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components ψA and χB may be defined by the equalities

ψA = α
ψBAηB√
ψCDηCμD

,

χB = 1

α

ψBAμA√
ψCDηCμD

, (1.220)

where α is an arbitrary nonzero complex number; ηC , μD (C, D = 1, 2, . . . , r)
are arbitrary, in general complex numbers satisfying the condition

ηCμDψCD �= 0. (1.221)

In relations (1.220) and (1.221), summing from 1 to r by coinciding indices is
assumed.

It is easy to show that if the quantities ψBA satisfy Eqs. (1.219), then the sets
{ψA} and {χB} as a whole (corresponding to all numbers α) do not depend on the
choice of the numbers ηC and μD .

If ψA and χB are fixed, the corresponding numberα is determined by the relation

α = ψAμA√
ψCDηCμD

.

Assuming that, in Eqs. (1.220), the numbers ηC and μD are given by the
equalities ηC = δCM and μD = δDN , Eqs. (1.220) may be written in the form

ψA = α
ψMA

√
ψMN

, χB = 1

α

ψBN

√
ψMN

. (1.222)

The sets {ψA} and {χB}, defined by the equalities (1.222), do not depend on the
values of the fixed indices M and N if the quantities ψBA satisfy Eqs. (1.219).

If r = 2ν , then, for the quantities ψBA satisfying Eqs. (1.219), according
to (1.94), in the even-dimensional space E+

2ν one can write

ψBA = 1

2ν

[
(−1)

1
2 ν(ν+1)KeBA +

2ν∑

m=1

1

m !K
i1i2···im ◦

γ BA
i1i2···im

]
. (1.223)

In Eqs. (1.223), the components Ki1i2···im , which are antisymmetric over all
indices i1i2 · · · im, are defined by the equalities

K = eBAχ
BψA = χAψA,

Ki1i2···im = (−1)m
◦
γ

i1i2···im
BA χBψA = (−1)

1
2 m(m−1) ◦

γ A
B
i1i2···imχBψA. (1.224)
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By virtue of definitions (1.224), the components of the tensors K satisfy the
following bilinear equations:

22νKn1···npKs1···sq = (−1)
1
2 [p(p−1)+q(q−1)]

2ν∑

k=0

2ν∑

m=0

1

m ! k !K
i1···ikKj1···jm

× tr
(
γi1···ik γ n1···npγj1···jmγ s1···sq ) . (1.225)

Similar relations can be easily written also in odd-dimensional spaces.
Evidently, specifying the set of components of K satisfying Eqs. (1.225), is

equivalent to specifying the quantities ψBA satisfying Eq. (1.219). It means that
specifying the set of components of K satisfying Eqs. (1.225), determines the set
of components χB and ψA up to multiplying all components χB and ψA by an
arbitrary complex number according to Eqs. (1.220).

If the components χB and ψA define two spinors in Euclidean space, then the
quantities Ki1i2···im are the components of an antisymmetric tensor of rank m, while
K is an invariant (at least under proper transformations of orthonormal bases of
Euclidean space). Evidently, if the relative sign of the components of the spinors χ

and ψ is not fixed, the quantities K are determined up to a common sign.



Chapter 2
Spinor Fields in a Riemannian Space

2.1 Riemannian Space

2.1.1 Basic Definitions

Let us recall the basic elementary data concerning Riemannian spaces. The material
to be presented in this section is of auxiliary nature, and proofs of the relations
appearing here can be found in known textbooks on Riemannian geometry (see,
e.g., [16, 55, 60]).

Consider a Riemannian space Vn of dimension n with the metric tensor g,
referred to the coordinate system x with the variables xi (i = 1, 2,. . . , n). We denote
by gij and gij the covariant and contravariant components of the metric tensor of
the space Vn specified in the coordinate system x. Let us introduce, at each point of
Vn, the Euclidean tangent vector space En, and let us choose in En a local covariant
vector basis Эi , tangent to the coordinate lines of xi .

Let L be a curve in the Riemannian space Vn, defined by the parametric equations
xi = xi(s), where xi(s) are continuously differentiable functions whose derivatives
do not vanish simultaneously,

(
dx1

ds

)2

+
(
dx2

ds

)2

+ · · · +
(
dxn

ds

)2

�= 0

(this inequality is the condition that L does not contain singular points). As is well-
known, parallel transport of vectors of the basis Эi along the curve L may be defined
in a Riemannian space Vn by an equality of the form

dЭi = Γ k
ijЭkdx

j , (2.1)

where dЭi is the differential of the basis vectors in the course of their parallel
transport from a point with the coordinates xi to a point with the coordinates xi+dxi
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on L; Γ k
ij are the connection coefficients (Christoffel symbols), defined in terms of

the metric tensor components,

Γ k
ij = 1

2
gks(−∂sgij + ∂igsj + ∂jgsi), (2.2)

where ∂i = ∂/∂xi is the symbol of a partial derivative with respect to the variables
xi .

In a Riemannian space, the differential dЭi , defined by relation (2.1), is not
holonomic; in curvilinear coordinate systems in Euclidean spaces, the basis vectors
Эi may be presented as derivatives of the radius vector, Эi = ∂ir . Therefore, in this
case, the differential dЭi is holonomic and may be presented in the form dЭi =
dxj∂jЭi = dxj ∂j ∂ir .

The coefficients Γ k
ij , defined by equality (2.2), are symmetric in their lower

indices: Γ k
ij = Γ k

ji .
Let us note the following relations for contractions of the Christoffel symbols

with the metric tensor components which directly follow from definition (2.2):

Γ
j
ij = 1

2g
∂ig,

gij Γ k
ij = − 1√|g|∂j

(√|g| gjk
)
. (2.3)

Here, g is the determinant of the covariant components of the metric tensor, g =
det ‖gij ‖.

When the variables of the coordinate system are transformed, xi → yi(xj ), the
Christoffel symbols are transformed in the following way:

(
Γ k
ij

)′ = ∂yk

∂xm

∂xl

∂yi

∂xn

∂yj
Γ m
ln + ∂yk

∂xm

∂xm

∂yi∂yj
.

Thus the transformation law for the Christoffel symbols is not tensor.
With the aid of the Christoffel symbols Γ k

ij , one defines covariant derivatives of

tensor fields in Vn. For a tensor field with components μ
j1...jq
i1...ip

, with p covariant
indices and q contravariant indices, the covariant derivative is defined by the
equality

∇kμ
j1...jq
i1...ip

= ∂kμ
j1...jq
i1...ip

(2.4)

+ Γ
j1
ks μ

sj2...jq
i1...ip

+
q−1∑

ν=2

Γ
jν
ks μ

j1...jν−1sjν+1...jq
i1...ip

+ Γ
jq
ks μ

j1...jq−1s

i1...ip

− Γ s
ki1

μ
j1...jq
si2...ip

−
p−1∑

ν=2

Γ s
kiν

μ
j1...jq
i1...iν−1siν+1...ip

− Γ s
kip

μ
j1...jq
i1...ip−1s

.
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In particular, for contravariant and covariant components of a vector we have

∇kμ
j = ∂kμ

j + Γ
j
ksμ

s,

∇kμj = ∂kμj − Γ s
kjμs.

Denoting the components of a tensor of arbitrary rank by the symbol μA
(A = 1, 2, . . . , N is a generalized index), we can rewrite Eq. (2.4) for the covariant
derivative of μA in the form

∇kμ
A = ∂kμ

A + FAi
Bj μ

BΓ j
ki . (2.5)

The components of the tensor FAi
Bj

, appearing in this relation, represent a sum

of different products of Kronecker deltas. A definition of the components FAi
Bj

is
evident from a comparison between Eqs. (2.4) and (2.5).

Unlike partial derivatives, an alternated product of covariant derivatives of a
tensor field in a Riemannian space is, in general, not zero. The following relation is
valid:

∇i∇jμ
A − ∇j∇iμ

A = −FAk
Bs μBRijk

s , (2.6)

where the components FAi
Bj

are the same as in Eqs. (2.5), while the components
Rijk

s are defined by the equality

Rijk
s = ∂jΓ

s
ik + Γ s

jpΓ
p
ik − ∂iΓ

s
jk − Γ s

ipΓ
p
jk. (2.7)

For covariant and contravariant components of a vector, Eq. (2.6) takes the form

(∇i∇j − ∇j∇i

)
μs = −Rijk

sμk,
(∇i∇j − ∇j∇i

)
μk = Rijk

sμs . (2.8)

The components Rijk
s , related to a basis Эi , define in Riemannian space

a fourth-rank tensor called the curvature tensor of the Riemannian space. The
components Rik and R defined by

Rik = Rijk
j , R = gikRik (2.9)

define the Ricci tensor and the scalar curvature of the Riemannian space, respec-
tively.1

1Some authors use another definition of the Ricci tensor components, Rjk = Rijk
i , which differs

in sign from definition (2.9) adopted here.
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Directly from definition (2.7), it follows that the covariant components of
the curvature tensor Rijkm = gsmRijk

s possess the following simple symmetry
properties:

Rijkm = Rkmij , R[ijk]m = 0,

Rijkm = −Rijmk, Rijkm = −Rjikm.

It is easy to count that, in a Riemannian space Vn, the number of independent
components of the curvature tensor is equal to 1

12n
2(n2 − 1); in the case of a

four-dimensional Riemannian space V4, important for applications, the number of
independent components of the curvature tensor is 20.

Due to definition (2.7), the curvature tensor components also satisfy the Bianchi
differential identity

∇mRijk
s + ∇iRjmk

s + ∇jRmik
s = 0. (2.10)

A contraction of the Bianchi identity (2.10) with the tensor components δisg
km

with respect to the indices s, i, k, m leads to the following important identity:

∇j

(
Ri

j − 1

2
Rδ

j

i

)
= 0.

2.1.2 Lie Derivatives

Consider a domain V0 of a Riemannian space Vn, and let the differentiable functions

xi = f i(x
j

0 ), det

∥
∥
∥
∥
∥
∂xi

∂x
j

0

∥
∥
∥
∥
∥

�= 0, (2.11)

realize a one-to-one, continuous correspondence between points of the domain V0
and points of some domain V in the space Vn. Under the transformation (2.11), each
point M0 of the domain V0 is put into correspondence with a point M of the domain
V , and the coordinate lines xi in V0 pass into certain lines x ′i in the domain V , to be
considered as coordinate lines of the coordinate system x ′ with the covariant vector
basis Э′

i in V . We thus have, in the domain V , two coordinate systems, x and x ′.
By definition of the coordinate system x ′, the coordinates of point M with respect

to x ′ are the coordinates of the preimage of M (i.e., point M0) with respect to the
system x. Let xi be the coordinates of point M in system x, x ′i the coordinates of
point M in system x ′, and consequently, according to (2.11), the coordinates xi and
x ′i of point M are connected by the equality xi = f i(x ′j ), while the bases Эi and
Э′

i of the coordinate systems x and x ′ are connected by the equalities

Э′
i = ∂xj

∂x ′i Эj , Эi = ∂x ′j

∂xi
Э′

j .



2.1 Riemannian Space 91

Consider, in a domain V0 of the space Vn, a tensor field μ
(
M0

)
, specified in a

coordinate system x by the components μA(M0
)
:

μ
(
M0

) = μA(M0
)
ЭA

(
M0

)
.

Here, ЭA are polyadic products of the basis vectors Эi , corresponding to the
structure of indices in the components of the tensor μ; M0 is an arbitrary point in V0.
Let us define, in the domain V , the tensor field μ̃

(
M
)

with components μ̃′A(M
)
,

calculated in the basis Э′
i and numerically equal to the components μA(M0

)
at

point M0 whose image is point M under the transformation (2.11). Thus,

μ̃(M) = μ̃′A(M
)
Э′

A(M), μ̃′A(M) = μA(M0).

The coordinate system x ′ in the domain V , with the variables x ′i , is called a
dragged coordinate system, and the tensor field μ̃

(
M
)

is called a dragged field under
the transformation (2.11).

The dragged tensor field μ̃
(
M
)

may also be defined in the basis Эi of the
coordinate system x:

μ̃(M) =
[
μ̃′A(M)

∂xB

∂x ′A

]
ЭB(M) =

[
μA(M0

) ∂xB

∂x ′A

]
ЭB(M).

Here, ∂xB/∂x ′A are the transformation coefficients for the components of the tensor
μA under the transformation of the coordinate system x → x ′. If the domains V

and V0 intersect, then, at each point of the intersection V0 ∩ V of V0 and V , two
tensors, μ(M) and μ̃(M), are defined. Let us calculate the difference −Luμ dt =
μ̃(M) − μ(M) at some point M ∈ V0 ∩ V under a small transformation (2.11),
which we will write in the form

xi = x ′i + uidt, x ′i = xi − uidt, (2.12)

where dt is an arbitrary (small) parameter, u(xi) = ujЭj is a certain specified
vector field. We have

− Luμ dt = μ̃
(
M
)− μ(M) =

[
μA(M0

) ∂xB

∂x ′A − μB(M)

]
ЭB(M). (2.13)

It is easy to verify that the coefficients ∂xB/∂x ′A of the transformation (2.12) may
be written in the form

∂xB

∂x ′A = δBA + F
Bj

Ai
∂j u

i dt, (2.14)
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where the quantities F
Bj

Ai
are the same as in Eq. (2.5). Using the notation (2.14),

expression (2.13) for the tensor −Luμ dt may be written as

− Luμ dt =
[
μB(M0

)+ F
Bj

Ai
μA(M0

)
∂j u

i dt − μB(M)
]
ЭB(M). (2.15)

Since for the transformation (2.12), up to first-order quantities with respect to dt ,
the functions μA(M0

)
and μA(M) are related by

μA(M0
) = μA(M) − ui∂iμ

A dt,

Equation (2.15), up to first-order small quantities, may be transformed to

−Luμ dt =
(
−ui∂iμ

B + F
Bj

Ai
μA∂ju

i
)
ЭB dt.

The tensor Luμ dt is called the Lie differential of the tensor μ with respect to
the vector field u. It is obvious that, geometrically, the quantity −Luμ dt is an
increment of the tensor field μ(M) at some point M due to its dragging along u dt .

The tensor

Luμ =
(
ui∂iμ

B − F
Bj

Ai
μA∂j u

i
)
ЭB (2.16)

is called the Lie derivative of the tensor field μ(M) with respect to the vector field
u(M). In the Riemannian space Vn, the Christoffel symbols are symmetric, Γ s

ij =
Γ s
ji , therefore, due to definition (2.5), we can also write expression (2.16) for the

Lie derivative in the form

Luμ =
(
ui∇iμ

B − F
Bj

Ai
μA∇ju

i
)
ЭB.

In particular, from definition (2.16) it follows that the Lie derivative of a scalar
field μ with respect to the vector field u coincides with the usual directional
derivative along the direction of the vector u:

Luμ = ui∂iμ. (2.17)

Lie derivatives for covariant and contravariant components of a vector field in Vn

are determined as

Luμ
j = ui∂iμ

j − μi∂iu
j ≡ ui∇iμ

j − μi∇iu
j ,

Luμj = ui∂iμj + μi∂j u
i ≡ ui∇iμj + μi∇ju

i. (2.18)
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Let us also present an expression for the Lie derivative of Christoffel symbols
Γ k
ij of the Riemannian space,

LuΓ
k
ij = us∂sΓ

k
ij − Γ s

ij ∂su
k + Γ k

sj∂iu
s + Γ k

si∂ju
s + ∂i∂ju

k

and for the covariant components of the metric tensor in a Riemannian space:

Lugij = us∂sgij + gis∂ju
s + gjs∂iu

s ≡ ∇iuj + ∇j ui.

If the metric tensor in the space Vn satisfies the equation

Lugij = ∇iuj + ∇j ui = 0, (2.19)

it is said that the space Vn admits a group of motions. Equation (2.19) is called
the Killing equation, while the vector u is in this case called a Killing vector.
Geometrically, the validity of Eq. (2.19) means that the Riemannian space Vn under
consideration possesses a symmetry (isometry), specified by the Killing vector u.

2.2 Nonholonomic Systems of Orthonormal Bases
in a Riemannian Space

In the Euclidean (or pseudo-Euclidean) space En, tangent to Vn at a certain point
xi , in addition to the local basis Эi , let us choose a local orthonormal basis ea ,
a = 1, 2, . . . , n. We will denote the indices of tensor components, specified in
orthonormal bases ea , by the first letters of the Latin alphabet, a, b, c, d , e, f ; those
of tensor components specified in the local bases Эi , will be denoted by the Latin
letters i, j , k,. . . . Let us denote by the symbol gab the components of the metric
tensor of the space En in the basis ea . Thus

gab = ±1 for a = b,

gab = 0 for a �= b.

The basis Эi is connected with the orthonormal basis ea by the relations

Эi = hi
aea, ea = hi

aЭi , (2.20)

in which the coefficients hi
a and hi

a are usually called the scale factors (or Lamé
coefficients). Taking into account that, for the scalar products of the basis vectors
Эi and ea , the following equalities hold,

(
Эi ,Эj

) = gij ,
(
ea, eb

) = gab, (2.21)
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we find, multiplying Eqs. (2.20) scalarly by the vectors Эi and ea that

hi
a = (

Эi , e
a
)
, hi

a = (
Эi , ea

)
. (2.22)

Replacing, in the first formula in (2.21), the vectors Эi and, in the second
formula in (2.21), the vectors ea using Eqs. (2.20), we obtain equalities connecting
the components of the metric tensor:

gij = hi
ahj

bgab, gab = hi
ah

j
bgij . (2.23)

It is also easy to see that the following equations are valid:

hi
ahj

a = δ
j

i , hi
ahi

b = δab .

They show that the matrices of the scale factors ‖hi
a‖ and ‖hj

b‖ are mutually
reciprocal.

Let us write the first equation in (2.23) in a matrix form:

‖gij ‖ = ‖hi
a‖‖gab‖‖hj

b‖T . (2.24)

Since det ‖hi
a‖ = det ‖hj

b‖T and det ‖gab‖ = (−1)q , Eq. (2.24) implies

det ‖gij ‖ = (
det ‖hi

a‖)2 det ‖gab‖ = (−1)q
(
det ‖hi

a‖)2
,

where q is the index of the tangent space En.
In the general case, in a Riemannian (or Euclidean) space, there are no coordinate

systems for whose coordinate lines the vectors ea(x
i) would be tangent vectors. In

this sense, the systems of orthonormal bases ea(x
i) are nonholonomic.

In what follows, we will suppose that the coefficients hi
a form in the space Vn at

least twice continuously differentiable fields.

2.2.1 Ricci Rotation Coefficients

Parallel transport of the vectors of orthonormal bases ea(x
i) in a Riemannian space

may be defined using the relation

dea = dxiΔi,a
beb, (2.25)

where Δi,a
b are certain coefficients called the Ricci rotation coefficients. Multiply-

ing Eq. (2.25) scalarly by the basis vector ec, we obtain the equality

dxiΔi,ac = (
ec, dea

)
, (2.26)
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in which Δi,ac = gbcΔi,a
b.

In Eq. (2.26), let us permute the indices a and c:

dxiΔi,ca = (
ea, dec

)
(2.27)

and add Eqs. (2.26) and (2.27). As a result, we obtain the equation

dxi
(
Δi,ac + Δi,ca

) = (
ea, dec

)+ (
ec, dea

) = d
(
ea, ec

)
. (2.28)

Taking into account equalities (2.21) and the constancy of the metric tensor
components gac, we continue Eq. (2.28):

dxi
(
Δi,ac + Δi,ca

) = dgac = 0. (2.29)

From Eq. (2.29) it follows that the Ricci rotation coefficients Δi,ac are antisymmet-
ric in the indices a, c: Δi,ac = −Δi,ca .

Evidently, the quantities dxiΔi,ac geometrically determine (up to first-order
small quantities) a transformation from the orthonormal basis ea

(
xi
)
, parallel-

transported from a point xi to a point xi + dxi , to the basis ea
(
xi + dxi

)
. The

antisymmetric nature of the components Δi,ac with respect to the indices a and c is
a consequence of the orthogonality of such transformation.

Consider the transformation properties of the Ricci symbols Δi,ab under trans-
formations of the orthonormal bases ea and under transformations of the holonomic
coordinates with the variables xi . Let the orthonormal bases ea(x

i) be in correspon-
dence with the Ricci rotation coefficients Δi,ab, and the bases e′

a(x
i), obtained from

ea(x
i) by the smooth orthogonal transformation

e′
a = lbaeb, (2.30)

be in correspondence with the Ricci rotation coefficients Δ′
i,ab, determined by the

relation

dxiΔ′
i,ab = (

e′
b, de′

a

)
.

Let us replace the vectors e′
a in this equality using Eq. (2.30):

dxiΔ′
i,ab = lcal

d
b

(
ed, dec

)+ (
ed , ec

)
ldbdl

c
a

=
[
lcal

d
b

(
ed , ef

)
Δi,c

f + (
ed, ec

)
ld b∂i l

c
a

]
dxi.

Using relations (2.21) and (2.26), we find

dxiΔ′
i,ab =

(
lcal

d
bΔi,cd + gcd l

d
b∂i l

c
a

)
dxi.
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This leads, due to arbitrariness of the quantities dxi , to the transformation formula
for the rotation coefficients:

Δ′
i,ab = lcal

d
bΔi,cd + gcd l

d
b∂i l

c
a. (2.31)

Thus the transformation of the Ricci rotation coefficients Δi,ab under orthogonal
transformations of the orthonormal bases ea is not tensor.

Since under any smooth transformation of the of the coordinates xi

xi → yi = yi(xj ) (2.32)

the vectors of an orthonormal basis ea remain unchanged, for the Ricci rotation
coefficients Δ′

i,ab in the coordinate system with the variables yi we have

dyiΔ′
i,ab = (

e′
b, de′

a

) = (
eb, dea

) = dxjΔj,ab.

This leads to the transformation formula for the Ricci rotation coefficients

Δ′
i,ab = ∂xj

∂yi
Δj,ab. (2.33)

Thus, under the transformation of variables of a holonomic coordinate sys-
tem (2.32), the Ricci rotation coefficients Δi,ab, corresponding to the orthonormal
bases ea(x

i), are transformed as covariant components of a vector.
The Ricci rotation coefficients may be expressed in terms of the scale factors. To

obtain the corresponding expression, we substitute in equality (2.26) the vectors ea
in terms of the vectors Эi according to Eq. (2.20):

dxiΔi,ac = (
ec, d

{
hk

aЭk

}) = (
ec,Эk

)
dhk

a + hk
a

(
ec, dЭk

)
. (2.34)

Using Eqs. (2.1) and taking into account the relations (2.22), we continue equal-
ity (2.34):

dxiΔi,ac = [(
ec,Эk

)
∂ih

k
a + hk

aΓ
j

ik

(
ec,Эj

)]
dxi = hjch

k
a

(
Γ

j

ik + hk
b∂ih

j
b

)
dxi.

Hence it follows

Δi,ac = hjch
k
a

(
Γ

j
ik + hk

b∂ih
j
b

)
. (2.35)

It is also useful to write (2.35) in an explicitly invariant and symmetric form:

Δi,ac = hjc∇′
ih

j
a ≡ 1

2

(
hjc∇′

ih
j
a − hja∇′

ih
j
c

)
.
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Here, ∇′
i is the symbol of a covariant derivative acting only upon the indices that

refer to the coordinate system with the variables xi . Thus

∇′
ih

j
a = ∂ih

j
a + Γ

j
ikh

k
a.

Equation (2.35) gives an expression of the Ricci rotation coefficients in terms of
the Christoffel symbols and the scale factors. Substituting, in this expression, the
Christoffel symbols Γ k

ij in terms of the metric tensor components according to the
equality (2.2), and, in the expression thus obtained, the components gij in terms of
the scale factors according to (2.23), we can obtain the following expression of the
Ricci rotation symbols Δi,ac in terms of the scale factors:

Δi,ac = 1

2

[
hj

c

(
∂ihja − ∂jhia

)−hj
a

(
∂ihjc − ∂jhic

)+hi
bhj

ah
s
c

(
∂jhsb − ∂shjb

)]
.

Along with the Ricci rotation coefficients Δi,ac, the symbols Δi,jm are also often
used:

Δi,jm = hj
ahm

cΔi,ac = 1

2

[
hi

a
(
∂jhma − ∂mhja

)

+ hj
a
(
∂ihma − ∂mhia

)− hm
a
(
∂ihja − ∂jhia

)]
(2.36)

or

Δi,jm = 1

2

(
hj

a∇′
ihma − hm

a∇′
ihja

)
(2.37)

as well as the symbols Δa,bc:

Δa,bc = hi
aΔi,bc = 1

2

(
hjc∇′

ah
j
b − hjb∇′

ah
j
c

)
,

where ∇′
a = hi

a∇′
i , or

Δa,bc = 1

2

[
hj

a(∂bhjc − ∂chjb)

+ hj
c(∂ahjb + ∂bhja) − hj

b(∂ahjc + ∂chja)
]
, (2.38)

where ∂a = hi
a∂i .

Using Eqs. (2.3), it is easy to show that, due to definitions (2.38), the Ricci
rotation coefficients Δa,bc satisfy the equality

Δb,a
b = 1√|g| ∂i

(
hi

a

√|g|
)
. (2.39)
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2.2.2 Covariant Derivatives

Covariant derivatives for the tensor components, specified in an orthonormal bases
ea , are defined in the following way:

∇kη
c1...cq
a1...ap = ∂kη

c1...cq
a1...ap

+ Δk,b
c1η

bc2...cq
a1...ap +

q−1∑

s=2

Δk,b
cs η

c1...cs−1bcs+1...cq
a1...ap + Δk,b

cq η
c1...cq−1b
a1...ap

− Δk,a1
bη

c1...cq
ba2...ap

−
p−1∑

s=2

Δk,as
bη

c1...cq
a1...as−1bas+1...ap

− Δk,ap
bη

c1...cq
a1...ap−1b

. (2.40)

In particular, for components of a vector field we have

∇kη
c = ∂kη

c + Δk,b
cηb,

∇kηa = ∂kηa − Δk,a
bηb.

Denoting the components of a tensor of an arbitrary rank, calculated in a basis
ea , by the symbol ηA, we can write an expression for the covariant derivative of ηA
in the form

∇kη
A = ∂kη

A + FAa
Bb ηBΔk,a

b. (2.41)

A definition of the quantities FAa
Bb

in Eq. (2.41) is evident from a comparison of
the equalities (2.40) and (2.41).

Contracting equation (2.35) with components hs
a with respect to the index a, we

obtain

∂ihs
c − Γ

j

ishj
c + Δi,b

chs
b = 0. (2.42)

The left-hand side of Eq. (2.42) represents a covariant derivative of the components
hs

c:

∇ihs
c = ∂ihs

c − Γ
j
ishj

c + Δi,b
chs

b.

Thus Eq. (2.42) may be written as vanishing of the covariant derivative of the
components hs

c: ∇ihs
c = 0. Equation (2.42) may also be written in the form

∇′
ihs

c = −Δi,b
chs

b. (2.43)
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The tetrad components of the curvature tensor of a Riemannian space are easily
expressed in terms of the Ricci rotation coefficients Δa,bc. To this end, it is sufficient
to replace in the equality

(∇′
i∇′

j − ∇′
j∇′

i

)
hs

a = −Rijk
shk

a

(see (2.8)) the derivatives of hs
a according to (2.43). After simple transformations,

the following equality is obtained:

Rabcd = ∂bΔa,cd − ∂aΔb,cd

+ Δf,cd

(
Δa,b

f − Δb,a
f
)− Δa,cfΔb,d

f + Δa,dfΔb,c
f . (2.44)

2.2.3 The Nonholonomity Object

The quantities

Ωab
c = −Ωba

c = 1

2
hi

ah
j
b

(
∂ihj

c − ∂jhi
c
)

(2.45)

form the nonholonomity object. Evidently, if the nonholonomity object vanishes,
Ωab

c = 0, then the inequality holds,

∂ihj
a = ∂j hi

a,

from which it follows that the scale factors hi
a are represented in the form

hi
a = ∂ya

∂xi
.

Hence it follows that vanishing of the nonholonomity object is a necessary and
sufficient condition for holonomity of the basis system ea(x

i).
A direct calculation shows that there holds the equality

∂a∂b − ∂b∂a = −2Ωab
c∂c,

in which ∂a = hi
a∂i are the differentiation operators in the directions of the vectors

ea .
From definitions (2.45) and (2.38) we find that the nonholonomity object is

connected with the Ricci rotation coefficients by the relation

Ωabc = 1

2

(
Δb,ac − Δa,bc

)
.
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The inverse relation has the form

Δa,bc = −Ωabc + Ωbca + Ωacb.

2.2.4 Fermi-Walker Transport

In some physical applications, along with the parallel transport considered above,
one also uses the so-called Fermi-Walker transport. Consider, in the Riemannian
space Vn, some non-null curve L without singular points, specified by the parametric
equations xi = xi(s), where s is the arc length along the curve L and xi(s) are
continuously differentiable functions. Let a = aiЭi be a vector field specified at
each point on L and tangent to L, such that

aia
i = ε = ±1 (2.46)

(the minus sign in Eq. (2.46) can appear for curves in Riemannian spaces with an
indefinite metric). The tensor μ = μAЭA is Fermi-Walker transported along the
curve L if the components μA satisfy the equation

D

ds
μA = FAi

Bj μ
Bε
(
ai

D

ds
aj − aj D

ds
ai

)
, (2.47)

in which the quantities FAi
Bj

are the same as in Eq. (2.5). D/ds = ai∇i is the symbol

of an absolute derivative along L. In particular, for components of a vector μiЭi =
μiЭi , Eq. (2.47) is written in the following way:

D

ds
μi = εμj

(
aj

D

ds
ai − ai D

ds
aj

)
,

D

ds
μj = −εμi

(
aj

D

ds
ai − ai D

ds
aj

)
. (2.48)

It is easy to see that the Fermi-Walker transport conserves the scalar product of
vectors. Indeed, if the vectors μiЭi and ηiЭi are Fermi-Walker transported along
the curve L, then

D

ds

(
μiηi

) = μi D

ds
ηi + ηi

D

ds
μi = ε

(
ηiμj + ηjμi

)
(
aj

D

ds
ai − ai

D

ds
aj

)
= 0.

Hence it follows, in particular that an orthonormal basis ea , being Fermi-Walker
transported along L, remains orthonormal.

Evidently, the field of the tangent vector aiЭi of the curve L satisfies Eq. (2.48),
and thus the tangent vector aiЭi is Fermi-Walker transported along L. In particular,
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if one of the vectors eb of an orthonormal basis is taken to be tangent to L, then,
being Fermi-Walker transported along L, the basis remains orthonormal, and its
vector eb is tangent to L at all points of L.

2.3 The Spinor as an Invariant Geometric Object
in a Riemannian Space

All finite-dimensional representations of the full linear group which includes
transformations of bases of the Euclidean vector space En are known, and it
turns out that, among them, there are no representations that would coincide, on
the orthogonal subgroup, with the spinor representation. Hence it follows that the
spinor representation of the orthogonal group cannot be extended to a linear finite-
dimensional representation of the full linear group.2

Therefore the components ψA of a spinor in a Euclidean vector space may be
introduced and considered, in general, only relative to a set of bases connected
by orthogonal transformations. In a similar way, the field of spinor components
ψA(xi) in a Euclidean point space may be, in general, introduced only relative to
coordinate systems connected by orthogonal transformations. In this connection,
in Riemannian spaces Vn, spinor fields are usually introduced at each point xi

as objects with components transformed by means of a spinor representation
of the orthogonal group of transformations of the orthonormal bases ea of the
Euclidean (or pseudo-Euclidean) space En, tangent to Vn at the point xi . Then,
the parallel transport rule for spinor components may be defined by establishing a
correspondence with parallel transport of the tensors defined by the spinor ψ . In
such a consideration, the spinor at point xi in Riemannian space is introduced, in
essence, in the tangent Euclidean space at this point.

An essential shortcoming of such a definition of spinor fields in the Riemannian
space Vn is that the choice of the systems of orthonormal bases at different points
of Vn cannot be fixed in a unique way, without additional conditions. The choice
of a set of orthonormal bases ea is not connected with the geometric properties of

2However, a certain extension of the representation of orthogonal groups does exist. Thus, for
instance, the group of linear transformations of a plane, defined by the matrices

M =
∥
∥∥∥
m1 −m2

m2 m1

∥
∥∥∥ ,

has the representation M → {±S}, where S is defined in the following way:

S =
∥∥∥
∥

√
m1 + im2 0

0 1/
√
m1 + im2

∥∥∥
∥ .

This representation passes into the spinor representation of the group of rotations of the plane for
m1 = cos ϕ, m2 = sinϕ (see Chap. 4).
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a Riemannian space and is in general, for a Riemannian space, a supplementary
construction. Introduction of a nonholonomic system of bases ea in a Riemannian
space Vn requires that one additionally introduces 1

2n(n − 1) components of a two-
valent tensor defining the bases ea .

The conclusions obtained above in a representation of spinors by systems of
tensors lead to another possibility of defining spinor fields in a Riemannian space.
Namely, as was shown above, the components ψA of a spinor in an orthonormal
basis in a Euclidean space are defined by the complex tensor components C with
some invariant algebraic relations between them. Thus, in an orthonormal basis, the
spinor may be defined as an invariant geometric object (in En) not only by the set of
components ψA but also by the set of components C. It is important that, unlike the
components ψA, the tensor components C may be defined in any non-orthogonal
basis of a Euclidean vector space, while the tensor fields C(xi) may be defined in
any curvilinear coordinate system in a Euclidean point space and in a Riemannian
space. The tensor fields C(xi) in a Riemannian space may also be defined in non-
holonomic orthonormal bases ea . In such orthonormal bases, one can also define the
corresponding spinor components ψA(xi).

Thus the spinor field in a Riemannian space may be defined either by the fields of
components C(xi) in an arbitrary coordinate system or by the field of components
ψA(xi) in a nonholonomic system of orthonormal bases ea . However, introduction
of the spinor components ψA is connected with additionally introducing 1

2n(n − 1)
functions determining the base ea , and such orthonormal sets of bases are external
and extraneous for a Riemannian space from the viewpoint of its geometric
properties. Therefore, introduction of spinors ψ into Vn with the aid of the tensor
components C is naturally and has certain advantages.

2.3.1 Parallel Transport and Covariant Differentiation
of Spinors in a Riemannian Space

To establish the parallel transport law for spinors in an n-dimensional Riemannian
space Vn, let us adopt, that the invariant spintensors E and γa are the same in all
spaces En and consequently do not depend on the variables xi3:

∂iE = 0, ∂iγa = 0. (2.49)

Consider, in a Riemannian space Vn, some continuously differentiable curve L.
By definition, the spinor ψ of any rank is parallel-transported along the curve L

if its components in an orthonormal basis ea(x
i), parallel-transported along L, are

constant.

3The theory of parallel transport of spinors in Riemannian spaces may also be developed without
this restriction (see [4]).
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It is easy to show that this definition of the parallel transport for spinors does not
depend on the choice of the parallel-transported basis ea(x

i).
Let ea(x

i) and ea(x
i + dxi) be orthonormal bases at the points xi and xi + dxi ,

respectively, on a curve L in the space Vn. Let us denote the basis ea(x
i), parallel-

transported from the point xi to the point xi + dxi , by the symbol e�a(x
i + dxi).

Thus, at the point xi + dxi , there are two bases: ea(x
i + dxi) and e�a(x

i + dxi).
By definition, the components of the spinor ψ , parallel-transported along L, are

the same in the basis ea(x
i) and in the basis e�a(x

i + dxi). In the general case,
the basis e�a(x

i + dxi) does not coincide with the basis ea(x
i + dxi), therefore the

components of the parallel-transported spinor are, in general, different in the bases
ea(x

i) and ea(x
i + dxi) on L. Let us calculate the differential for the covariant and

contravariant components of a first-rank spinor which is parallel-transported from
the point xi to the point xi + dxi on L, calculated in the bases ea(x

i). According
to the equality (2.25), the orthogonal transformation from the basis e�a(x

i + dxi) to
the basis ea(x

i + dxi) at the point xi + dxi on L is written, up to first-order small
quantities, as

e�a(x
i + dxi) = (

δba + dxjΔj,a
b
)
eb(x

i + dxi), (2.50)

where Δj,a
b are the Ricci rotation coefficients calculated at the point xi . The

transformation S of the spinor components, corresponding to the orthogonal
transformation (2.50), according to definition (1.159), may be written as follows:

S = ‖SB
A‖ = I + 1

4
dxiΔi,abγ

ab. (2.51)

Here, I is the unit matrix of the order 2ν . For the inverse transformation S−1, up to
first-order small quantities, we have

S−1 = ‖ZB
A‖ = I − 1

4
dxiΔi,abγ

ab. (2.52)

Let, at a point xi of the curve L in the basis ea(x
i), the spinor ψ have

the contravariant components ψA(xi) and the covariant components ψA(x
i). By

definition, the spinor ψ , parallel-transported to the point xi + dxi on the curve
L in the basis e�a(x

i + dxi), has the same contravariant components ψA(xi)

and covariant components ψA(x
i). Therefore, to calculate the components of

a parallel-transported spinor at a point xi + dxi of the curve L in the basis
ea(x

i + dxi), it is sufficient to subject its components ψA(xi), ψA(x
i) to the

spinor transformation (2.51), (2.52), corresponding to a transition from the basis
e�a(x

i + dxi) to the basis ea(x
i + dxi).
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Thus, denoting the contravariant and covariant components of the spinor parallel-
transported from the point xi to the point xi + dxi of the curve L in the basis
ea(x

i + dxi) by the symbols ψB
�
(xi + dxi) and ψ

�

B(xi + dxi), we can write

ψB
�
(xi + dxi) = SB

Aψ
A(xi),

ψ
�

B(xi + dxi) = ZA
BψA(x

i). (2.53)

Using expressions (2.51) and (2.52) for S and S−1, we can write Eq. (2.53) for
contravariant components of a parallel-transported spinor as follows:

ψB
�
(xi + dxi) = (

δBA + dxiΓ B
iA

)
ψA(xi), (2.54)

and for covariant components

ψ
�

B(xi + dxi) = (
δAB − dxiΓ A

iB

)
ψA(x

i). (2.55)

The coefficients Γ B
iA, called the spinor connection coefficients, are, according to

Eqs. (2.51) and (2.52), defined by the formula

‖Γ B
iA‖ = Γi = 1

4
Δi,abγ

ab. (2.56)

Just as for tensors, the result of the above-defined parallel transport of spinors
between two points of a Riemannian space depends on the curve L connecting these
points, along which the parallel transport is carried out.

Consider the transformation of the spinor connection symbols Γi under transfor-
mations of the coordinate system.

From definition (2.56) and from the transformation law (2.33) for the Ricci
rotation coefficients it follows that, under an arbitrary smooth transformation of the
variables xi of a holonomic coordinate system of the Riemannian space, xi → yi =
yi(xj ), the coefficients Γi are transformed as covariant components of a vector,

Γ ′
i = ∂xj

∂yi
Γj .

Let us also establish the transformation law for the spinor connection symbols
Γi under arbitrary smooth transformations of the set of orthonormal bases ea(x

i)

obtained in a continuous way from the identical transformation

e′
a = lbaeb. (2.57)
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Taking into account the invariance of the spintensor components γ ab under the
transformation (2.57) and Eq. (2.31), for Γ ′

i we obtain:

Γ ′
i = 1

4
Δ′

i,abγ
ab = 1

4

(
lcal

d
bΔi,cd + gcd l

d
b∂i l

c
a

)
γ ab. (2.58)

Let S be the matrix of a spinor transformation corresponding to the orthogonal
transformation (2.57). By definition, the matrix S satisfies the equations

lbaγb = S−1γaS, E = ST ES. (2.59)

From definitions (2.59) it follows

lbaγ
a = Sγ bS−1, lcal

d
bγ

ab = Sγ cdS−1. (2.60)

Taking into account the second relation in (2.60), we can write (2.58) in the form

Γ ′
i = 1

4

(
Δi,abSγ

abS−1 + gcd l
d
b∂i l

c
aγ

ab
) = SΓiS

−1 + 1

4
gcd l

d
b∂i l

c
aγ

ab.

(2.61)

It is helpful to represent Eq. (2.61) in another form. To this end, let us differentiate
the first equation in (2.59), multiplied from the left by S, with respect to xi . Taking
into account the constancy of the matrices γa , we find

(
∂il

b
a

)
Sγb + ∂iS

(
lbaγb

) = γa∂iS. (2.62)

Multiplying Eq. (2.62) from the right by the matrix S−1, after simple transforma-
tions with the aid of the first equations in (2.59) and (2.60), we obtain the equation

γa
(
∂iS · S−1)− (

∂iS · S−1)γa = (
gcd l

c
b∂i l

d
a

)
γ b. (2.63)

Differentiating the second equation in (2.59) with respect to xi , after a simple
transformation, we arrive at the equation

E
(
∂iS · S−1)+ (

∂iS · S−1)T E = 0. (2.64)

From (2.63) and (2.64) it follows:

∂iS · S−1 = 1

4
gcdl

c
b∂i l

d
aγ

ab, (2.65)

or

∂iS = 1

4
gcd l

c
b∂i l

d
aγ

abS, ∂iS
−1 = −1

4
gcd l

c
b∂i l

d
aS

−1γ ab.
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Replacing the second term in (2.61) according to Eq. (2.65), we finally write
down the transformation law for the spinor connection symbols under the orthogonal
transformation (2.57) of the bases ea(x

i) in the form

Γ ′
i = SΓiS

−1 + ∂iS · S−1.

Consider now a spinor field ψ(xi) along a curve L in a Riemannian space Vn,
defined in a nonholonomic system of orthonormal bases ea(x

i) by a continuously
differentiable field of contravariant componentsψA(xi), or by a continuously differ-
entiable field of covariant components ψA(x

i). For the covariant and contravariant
components of the spinor at the point xi + dxi , specified in the basis ea(x

i + dxi),
up to first-order small quantities we have:

ψA(xi + dxi) = ψA(xi) + dxj ∂jψ
A(xi),

ψA(x
i + dxi) = ψA(x

i) + dxj ∂jψA(x
i). (2.66)

Let us denote by the symbol ψA
�
(xi) the components of the spinor ψ(xi + dxi)

parallel-transported from the point xi + dxi to the point xi in the basis ea(x
i). Due

to Eq. (2.54), for the components ψA
�
(xi), the following equality holds:

ψB
�
(xi) = (

δBA − dxiΓ B
iA

)
ψA(xi + dxi), (2.67)

where the spinor connection coefficients Γ B
iA are defined according to (2.56).

Consider the difference DψA between the contravariant components of the
spinor ψA(xi) and the contravariant components of the spinor ψA

�
(xi), parallel-

transported from the point xi + dxi to the point xi . Taking into account the equality
(2.67), up to first-order small quantities, we find for the components DψA in the
basis ea(x

i):

DψA = ψA
�
(xi) − ψA(xi) = ψA(xi + dxi) − dxjΓ A

jBψ
B(xi) − ψA(xi).

Replacing, in this formula, the components ψA(xi + dxi) via ψA(xi) according
to (2.66), we obtain

DψA = dxi
(
∂iψ

A − Γ A
iBψB

)
. (2.68)

In the same manner, for the difference of covariant components of the spinor
DψA = ψ

�

A(x
i) − ψA(x

i) we can find

DψA = dxi
(
∂iψA + Γ B

iAψB

)
. (2.69)
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It is convenient to write Eqs. (2.68) and (2.69) in a matrix form:

Dψ = dxi
(
∂iψ − Γiψ

) = dxi

(
∂iψ − 1

4
Δi,abγ

abψ

)
,

Dψ̃ = dxi
(
∂iψ̃ + ψ̃ Γi

) = dxi

(
∂iψ̃ + 1

4
Δi,abψ̃γ ab

)
. (2.70)

Here, ψ is a column of the contravariant components of the spinor ψA, ψ̃ is a
row of the covariant components of ψA, and Γi are the matrices of spinor connection
symbols Γ B

iA.
The first-rank spinor Dψ , defined by the covariant components DψA or by the

contravariant component DψA, is called the covariant (or absolute) differential of
the spinor ψ(xi) at the point xi .

Similarly to (2.66)–(2.69), one can introduce definitions of covariant differentials
for spinor fields of any rank with q contravariant indices and p covariant indices:

Dψ
B1...Bq

A1...Ap
= dxi

(
∂iψ

B1...Bq

A1...Ap

− Γ
B1
iC ψ

CB2...Bq

A1...Ap
−

q−1∑

α=2

Γ
Bα

iC ψ
B1...Bα−1CBα+1...Bq

A1...Ap
− Γ

Bq

iC ψ
B1...Bq−1C

A1...Ap

+ Γ E
iA1

ψ
B1...Bq

EA2...Ap
+

p−1∑

α=2

Γ E
iAα

ψ
B1...Bq

A1...Aα−1EAα+1...Ap
+ Γ E

iAp
ψ

B1...Bq

A2...Ap−1E

)
.

(2.71)

By the sense of the definition, the covariant differentialDψ of a spinor is a spinor
of the same rank as ψ .

Evidently, if the spinor ψ is parallel-transported along a curve L, then its
covariant differential along L is zero, Dψ = 0.

Since, at continuous rotations of orthonormal bases ea(x
i), the components of the

spintensors E and γa are invariant, they do not change in parallel transport along L.
Therefore the covariant differentials of the spintensors E and γa are equal to zero,

DE = 0, Dγa = 0. (2.72)

Taking into account definition (2.71) and conditions (2.49), one can write
Eqs. (2.72) in the form

DE = dxi
(
EΓi + Γ T

i E
) = 0,

Dγa = dxi
(− Δi,a

bγb − Γiγa + γaΓi

) = 0. (2.73)



108 2 Spinor Fields in a Riemannian Space

It is easy to verify directly that Eqs. (2.73) are fulfilled identically due to defini-
tion (2.56) of the spinor connection symbols Γi .

Carrying out a parallel transport of the spinor ψ along the curve L, it is possible
to put this spinor, at each point of L, in correspondence to the real tensors D and
to the complex tensors C according to Eqs. (1.203), (1.212). Let us show that, with
the above-defined parallel transport of spinors, the tensors C and D, defined by the
parallel-transported spinor, are also a result of parallel transport according to the
usual tensor law.

Let, at a point xi on the curve L, a spinor ψ(xi) in the basis ea(x
i) be determined

by the contravariant components ψ(xi), while a spinor parallel-transported to the
point xi + dxi on L is determined in the basis ea(x

i + dxi) by the components
ψ� = (

I +dxiΓi

)
ψ . At the point xi , the spinor ψ(xi) is in correspondence with the

tensor C(xi) with components C(xi) and Ca1a2...as (xi) defined in the basis ea(x
i):

C(xi) = ψT (xi)Eψ(xi),

Ca1a2...as (xi) = ψT (xi)Eγ a1a2...asψ(xi).

At the point xi + dxi , the parallel-transported spinor is, according to rela-
tions (2.54), in correspondence with the tensors C�(x

i + dxi), defined in the basis
ea(x

i + dxi) by the components

C�(x
i + dxi) = (

ψ + dxjΓjψ
)T

E
(
ψ + dxsΓsψ

)
,

C
a1a2...as
�

(xi + dxi) = (
ψ + dxjΓjψ

)T
Eγ a1a2...as

(
ψ + dxsΓsψ

)
. (2.74)

From Eqs. (2.74), up to small first-order quantities, we have

C�(x
i + dxi) = ψT Eψ + dxjψT

(
EΓj + Γ T

j E
)
ψ,

C
a1a2...as
�

(xi + dxi) = ψT Eγ a1a2...asψ

+ dxjψT
(
Eγ a1a2...asΓj + Γ T

j Eγ a1a2...as
)
ψ. (2.75)

Replacing in the first equation (2.75) the coefficients Γj according to Eq. (2.56)
and taking into account the relation

Eγ ab = −(γ ab)T E (2.76)

that follows from (1.54) for k = 2, we find for the scalar C:

C�(x
i + dxi) = ψT (xi)Eψ(xi) = C(xi).
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Thus the scalar C is invariant under the parallel transport we consider. To
transform the second equation (2.75), we will use the identity

1

2
(γ bcγ a1a2...as − γ a1a2...as γ bc)

= (−1)ss
(− gc [a1γ a2...as ] b + gb [a1γ a2...as ] c), (2.77)

which is obtained by adding of the identities (1.16c) and (1.16d). Substituting in
the second equation (2.75) the coefficients Γj according to the law (2.56) and taking
into account relations (2.76) and (2.77), we find for the components of the tensors
C

a1a2...as
�

(xi + dxi) at the point xi + dxi :

C
a1a2...as
�

(xi + dxi) = ψT (xi)Eγ a1a2...asψ(xi)

+ dxjψT (xi)E

(
Δj,b

a1γ ba2...as +
s−1∑

ν=2

Δj,b
aν γ a1...aν−1baν+1...as

+ Δj,b
as γ a1...as−1b

)
ψ(xi) = Ca1a2...as (xi) + dxj

(
Δj,b

a1Cba2...as (xi)

+
s−1∑

ν=2

Δj,b
aνCa1a2...aν−1baν+1...as (xi) + Δj,b

asCa1a2...as−1b(xi)

)
. (2.78)

Equation (2.78) defines a usual tensor parallel transpost. In the same manner,
one can show that the real tensors D, defined by the spinor ψ , are also subject to
parallel transport according to the tensor law when the spinor is parallel-transported
according to (2.54) and (2.55).

It should be noted that the parallel transport of spinors could be defined by
precisely this property of correspondence to the parallel transport of the tensors
C or D defined by the spinor. Using the real tensors D, it easy to find that this
condition is written in the form of the set of equations

EΓi + Γ T
i E = 0,

Eγ a1a2...asΓi + Γ T
i Eγ a1a2...as = E

(
Δj,b

a1γ ba2...as

+
s−1∑

ν=2

Δj,b
aν γ a1...aν−1baν+1...as + Δj,b

as γ a1...as−1b

)
,
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which may also be rewritten in the form

EΓi + Γ T
i E = 0, (2.79)

γ a1a2...as Γi − Γiγ
a1a2...as = Δj,b

a1γ ba2...as

+
s−1∑

ν=2

Δj,b
aν γ a1...aν−1baν+1...as + Δj,b

as γ a1...as−1b.

The set of Eqs. (2.79) has a solution for Γi in the form (2.56). Using the complex
tensors C for defining the parallel transport for spinors also leads to Eqs. (2.79).

In a four-dimensional pseudo-Riemannian space, the above way of defining
the symbols Γi , connected with using the real tensors D, is realized in [20–24].
However, Refs. [20–24] did not use the first equation in (2.79), therefore in [20–24]
the symbols Γi are defined by the equations used there only up to an arbitrary
spherical matrix.

Equations (2.68) and (2.69) for the covariant differential of the components of a
first-rank spinor may be written in the form

DψA = dxi∇iψ
A, DψA = dxi∇iψA,

where by definition

∇iψ
A = ∂iψ

A − Γ A
iBψ

B, (2.80)

and

∇iψA = ∂iψA + Γ B
iAψB. (2.81)

Evidently, the quantities ∇iψ
A and ∇iψA form a spintensor having one addi-

tional covariant tensor index as compared with ψA and ψA. Spintensors with
components ∇iψ

A and ∇iψA are called the covariant derivatives of the spinor fields
ψA(xi) and ψA(x

i). In a Cartesian coordinate system in a Euclidean space, the
connection symbols Γi are zero, and the covariant derivatives ∇i turn into usual
partial derivatives.

Equations (2.80) and (2.81) may be conveniently written in a matrix form:

∇iψ = ∂iψ − Γiψ, ∇i ψ̃ = ∂iψ̃ + ψ̃Γi.

It follows from Eqs. (2.73) that covariant derivatives of the metric spinor E and
the spintensors γa are equal to zero:

∇iE = EΓi + Γ T
i E = 0,

∇iγa = −Δi,a
bγb − Γiγa + γaΓi = 0.
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Just as for tensor fields, covariant derivatives of spinor fields are not commuta-
tive. Rather a simple calculation leads to the following expressions for alternated
covariant derivatives of contravariant components of a first-rank spinor field:

∇i∇jψ − ∇j∇iψ = 1

4
Rijksγ

ksψ,

and for alternated covariant components of a first-rank spinor field:

∇i∇j ψ̃ − ∇j∇i ψ̃ = −1

4
Rijks ψ̃γ ks.

2.4 Fermi-Walker Transport of Spinors

Consider a Riemannian space Vn, referred to a coordinate system xi , with a
covariant vector basis Эi . Let L be some nonnull continuously differentiable curve
without singular points in the space Vn, and let an arbitrary orthonormal basis
ěa(x

i), connected with the basis Эi by the scale factors ěa = ȟi
aЭi , be Fermi-

Walker transported along L. By definition of the Fermi-Walker transport for vectors,
for the scale factors ȟi

a determining the basis ěa , the following condition is valid:

D′

ds
ȟi

a = εȟj
a

(
aj

D

ds
ai − ai D

ds
aj

)
, (2.82)

where aj and ai are components of a unit (or imaginary-unit, depending on the kind
of L) vector a, tangent to L; ε = aia

i is the sign indicator of the squared vector a.
For the derivative D′ȟi

a/ds, we have by definition

D′

ds
ȟi

a = aj∇′
j ȟ

i
a = aj

(
∂j ȟ

i
a + Γ i

js ȟ
s
a

)
,

where Γ i
js are the Christoffel symbols corresponding to the coordinate system with

the variables xi . Contracting equation (2.43), written for the bases ěa , with the
tensor components aiȟs

a with respect to the indices i and s, we obtain that for the
Ricci rotation coefficients Δ̌j,a

b, corresponding to the bases ěa(x
i), the following

equation holds:

aiΔ̌i,a
b = −ȟi

a

D′

ds
ȟi

b = ȟi
b D

′

ds
ȟi

a.

Therefore, replacing here the derivative D′/Ds according to Eq. (2.82), we obtain

aj Δ̌j,a
b = εȟj

aȟi
b

(
aj

D

ds
ai − ai D

ds
aj

)
. (2.83)
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Let us introduce, in the space Vn, an arbitrary smooth system of orthonormal
bases ea(x

i), corresponding to the Ricci rotation symbols Δi,ab. For simplicity
of the subsequent transformations (and without loss of generality), let us further
suppose that, at a single selected point xi on L, the bases ea(x

i) and ěa(x
i) coincide.

Then, for the bases ea(x
i + dxi) and ěa(x

i + dxi) at the point xi + dxi on L, up to
small first-order quantities, we have

ea(x
i + dxi) = (

δba + dxjΔj,a
b
)
eb(x

i),

ěa(x
i + dxi) = (

δba + dxj Δ̌j,a
b
)
eb(x

i). (2.84)

From the second equation (2.84), also up to small first-order quantities, we obtain

eb(x
i) = (

δcb − dxjΔj,b
c
)
ěc(x

i + dxi). (2.85)

Replacing in the first equation (2.84) the vectors eb(x
i) according to Eq. (2.85),

we obtain that the bases ea(x
i + dxi) and ěa(x

i + dxi) are connected by an
orthogonal transformation of the form

ea(x
i + dxi) = (

δba + dxjΔj,a
b
)(
δcb − dxsΔ̌s,b

c
)
ěc(x

i + dxi)

= [
δca + dxj

(
Δj,a

c − Δ̌j,a
c
)]

ěc(x
i + dxi). (2.86)

By definition, a spinor (of arbitrary rank) is Fermi-Walker transported on the
curve L in the Riemannian space Vn if its components are constant in the local
orthonormal basis ěa(x

i), Fermi-Walker transported on L.
Consider, at a point xi on the curve L in the space Vn, a first-rank spinor ψ(xi)

specified by its contravariant or covariant components ψA(xi) or ψA(x
i) in the

orthonormal basis ea(x
i). Let us Fermi-Walker transport the spinor ψ(xi) from a

point xi to a point xi + dxi on the curve L. By definition, the components of
the transported spinor at the point xi + dxi in the basis ěa(x

i + dxi) coincide
with its components at the point xi in the basis ea(x

i). Therefore, to calculate
the components ψA(xi + dxi) and ψA(x

i + dxi) of the transported spinor in
the basis ea(x

i + dxi), it is sufficient to subject the components ψA(xi) and
ψA(x

i) to the spinor transformations S, S−1 corresponding to the orthogonal
transformation (2.86). For the spinor transformations S and S−1, according to
definition (1.159), we have

S = I + 1

4
dxj

(
Δj,ab − Δ̌j,ab

)
γ aγ b,

S−1 = I − 1

4
dxj

(
Δj,ab − Δ̌j,ab

)
γ aγ b,

where dxj = ajds. Therefore, for the components ψA(xi +dxi) and ψA(x
i +dxi)

of the spinor ψ(xi), Fermi-Walker transported to the point xi + dxi and calculated
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in the basis ea(x
i + dxi), we have (in a matrix form)

ψ(xi + dxi) = ψ(xi) + 1

4
aj
(
Δj,ab − Δ̌j,ab

)
γ aγ bψ(xi) ds,

ψ̃(xi + dxi) = ψ̃(xi) − 1

4
aj
(
Δj,ab − Δ̌j,ab

)
ψ̃(xi)γ aγ b ds. (2.87)

Equations (2.87) imply the relations for differentials of the contravariant and
covariant components of the spinor in the basis ea(x

i) when it is Fermi-Walker
transported:

dψ = 1

4
aj
(
Δj,ab − Δ̌j,ab

)
γ aγ bψ ds,

dψ̃ = −1

4
aj
(
Δj,ab − Δ̌j,ab

)
ψ̃γ aγ b ds. (2.88)

Taking into account definitions (2.70) of the absolute differential and defini-
tions (2.83) for the quantities ajΔ̌j,a

b, Eqs. (2.88) may be written in the form

Dψ = 1

4
ε

(
aj

D

ds
ai − ai

D

ds
aj

)
γ iγ jψ ds,

Dψ̃ = −1

4
ε

(
aj

D

ds
ai − ai

D

ds
aj

)
ψ̃γ iγ j ds.

(2.89)

It is also easy to obtain Eqs. (2.89) by postulating the correspondence between
the transport of spinors and the Fermi-Walker transport of the tensors C and D

defined by the spinor.
One can also, in an evident way, obtain equations defining the Fermi-Walker

transport for spinors of any rank.

2.5 Lie Differentiation of Spinor Fields

Let Vn be a Riemannian space of dimension n, related to a holonomic coordinate
system with the variables xi and the covariant vector basis Эi . Let us introduce, in
the space Vn, a smooth field of bases ea(x

i). Consider a motion of the Riemannian
space Vn, determined by the Killing vector field u(xi) = uiЭi . By definition, the
components of the Killing vector ui satisfy the equation

Lugij = ∇iuj + ∇jui = 0.

When the Riemannian space is dragged along the Killing vector u, the orthonor-
mal bases ea(x

i − uidt) pass into orthonormal bases, to be denoted by the symbol
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∗
ea(x

i). For the Lie derivative of the scale factors, defining the bases ea(x
i) by

formulae (2.20), with respect to the Killing vector u, according to definitions (2.18)
and (2.42), we have:

Luh
i
a = us∂sh

i
a − hj

a∂ju
i = ujΔj,a

chi
c − hj

a∇ju
i, (2.90)

where Δj,a
c are the Ricci rotation coefficients corresponding to the orthonormal

bases ea(x
i). Using equality (2.90), we find that the transformation of the orthonor-

mal basis
∗
ea(x

i), dragged to the point xi , to the basis ea(x
i),

∗
ea(x

i) = (
δba + εa

b dt
)
eb(x

i), (2.91)

is determined by the relation

εa
b = hi

bLuh
i
a = usΔs,a

b − hj
ahi

b∇ju
i.

Let us define, in the space Vn, the spinor field ψ(xi) with the components
specified in the bases ea(x

i). The spinor transformation S(dt), corresponding to
the orthogonal transformation (2.91), according to definition (1.159), has the form

S
(
dt
) = I + 1

4
γ abεabdt = I + 1

4
γ ij

(
usΔs.ij − ∇iuj

)
dt. (2.92)

By definition, the spinor field ψ(xi) is dragged by the motion xi − uidt → xi

if its components, calculated with respect to the dragged bases
∗
ea(x

i), are constant.
From this definition it follows that, if in the basis ea(x

i − uidt) a first-rank spinor
is specified by the contravariant components ψA(xi − uidt) or by the covariant

components ψA(x
i − uidt), then in the basis

∗
ea(x

i), dragged to the point xi , the
components of the spinor are the same as in the basis ea(x

i − uidt), and in order to
obtain the components of the dragged spinor field in the basis ea(x

i), it is sufficient
to subject its components to the spinor transformation (2.92):

∗
ψA(xi) = SA

Bψ
B(xi − uidt) = SA

B

[
ψB(xi) − uj∂jψ

B dt
]
,

∗
ψB(x

i) = ZA
BψA(x

i − uidt) = ZA
B

[
ψA(x

i) − uj∂jψA dt
]
.

Here, ‖ZA
B‖ = ‖SA

B‖−1.
Let us define the Lie differential of a spinor field at a point with the coordinates

xi by the components Luψdt:

−Luψdt = ∗
ψ(xi) − ψ(xi).
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Taking into account equality (2.92) for Luψ
Adt , we obtain up to small first-order

quantities:

Luψ
Adt = −

[
δAB + 1

4

(
usΔs,ij − ∇iuj

)
γ A

B
ij dt

]
[
ψB(xi) − uj∂jψ

B dt
]

+ ψA(xi) =
(
uj∇jψ

A + 1

4
γ A

B
ijψB∇iuj

)
dt.

where ‖γ A
B
ij‖ = γ ij . In the same manner, for the Lie differential LuψBdt we find:

LuψBdt =
(
ui∇iψB − 1

4
ψAγ

A
B
ij∇iuj

)
dt.

We define Lie derivatives of a spinor field with respect to the vector field u by
the equalities

Luψ
A = ui∇iψ

A + 1

4
γ A

B
ijψB∇iuj ,

LuψB = ui∇iψB − 1

4
ψAγ

A
B
ij∇iuj .

It is not hard to generalize the relations obtained to a spinor field of any rank,

with components ψ
A1...Ap

B1...Bq
:

Luψ
A1...Ap

B1...Bq
= ui∇iψ

A1...Ap

B1...Bq
+ 1

4

(
− γ A1

C
ijψ

CA2...Ap

B1...Bq

−
p−1∑

α=2

γ Aα
C
ijψ

A1...Aα−1CAα+1...Ap

B1...Bq
− γ Ap

C
ijψ

A1...Ap−1C

B1...Bq
+ γ E

B1
ij ψ

A1...Ap

EB2...Bq

+
q−1∑

α=2

γ E
Bα

ijψ
A1...Ap

B1...Bα−1EBα+1...Bq
+ γ E

Bq
ijψ

A1...Ap

B1...Bq−1E

)
∇iuj . (2.93)

If one considers an object with components having tensor and spinor indices,
then the Lie derivatives are formed depending on the structure of indices according
to Eqs. (2.93) and (2.18).

Due to invariance of the components of the spintensors E and γa under
continuous orthogonal transformations, the Lie derivatives of E and γa with respect
to the Killing vector u are equal to zero,

LuE = 0, Luγa = 0. (2.94)



Chapter 3
Spinors in the Four-Dimensional
Pseudo-Euclidean Space

3.1 Dirac Matrices and the Spinor Representation
of the Lorentz Group

3.1.1 The Lorentz Group

Let us consider the four-dimensional pseudo-Euclidean vector space E1
4 of index 1

referred to an orthonormal basis Эi , i = 1, 2, 3, 4. The scalar products of the vectors
of orthonormal basis gij = (

Эi ,Эj

)
in the space E1

4 are defined by the matrix

gij =

∥
∥
∥
∥∥
∥
∥
∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

∥
∥
∥
∥∥
∥
∥
∥

.

Consider the set of all transformations of basis Эi :

Э′
i = lj iej , (3.1)

defined by the condition of invariance of the scalar products gij :

lmil
n
j gmn = gij . (3.2)

Transformations (3.1) of an orthonormal basis in the space E1
4 under condi-

tion (3.2) are called the Lorentz transformations.
Equations (3.2) for i = n = 4 are written in the form

(
l44

)2 −
3∑

α=1

(
lα4

)2 = 1. (3.3)
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From (3.3) it follows
(
l44
)2 � 1 and therefore coefficient l44 of the Lorentz

transformation always either greater than unity or less than minus unity:

l44 � +1 or l44 � −1.

Denote by the symbol L the matrix of the transformation coefficients lj i and by
the symbol g the matrix of the components gij ; then condition (3.2) can be written
in the matrix form:

LTgL = g, (3.4)

where the symbol “T ” means transposition. Since detLT = detL, then from
Eq. (3.4) it follows (detL)2 = 1. From this it follows that the determinant of matrix
L is equal to +1 or −1

detL = ±1. (3.5)

It is easy to see that if transformations L1 and L2 of the bases Эi satisfy Eq. (3.4)
that the product L1L2 also satisfy Eq. (3.4). From Eq. (3.5) it follows that for each
transformation L, satisfying Eq. (3.4), there always exists the inverse transformation
L−1, and L−1 also satisfies Eq. (3.4). Thus the set of all Lorentz transformations
forms the group O1

4 . O1
4 is called the Lorentz group.

The Lorentz group may be split into four connected components [18, 25, 54]:
1. The first connected component L

↑
+ consists of the Lorentz transformations,

which are defined by the conditions

det ‖lj i‖ = +1, l44 � +1.

These transformations do not change the direction of time therefore they are
also called the proper orthochronous transformations, or the restricted Lorentz
transformation. It is easy to see that the set of all transformations from L

↑
+ forms

a group, called the proper orthochronous Lorentz group, or the restricted Lorentz
group.

2. The second connected component L
↑
− of the Lorentz group consists of all

transformations of the form L = PG, where G is the arbitrary restricted Lorentz
transformation and P is the space inversion transformation

P = ‖lj i‖ =

∥∥
∥
∥
∥
∥
∥∥

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

∥∥
∥
∥
∥
∥
∥∥

.

The transformations L = PG are called improper orthochronous transforma-
tions. It is obvious that for the improper orthochronous transformations are carried
out the relations

det ‖lj i‖ = −1, l44 � +1.
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The set of all transformations L↑ = L
↑
+ ∪ L

↑
− forms a group called the

orthochronous Lorentz group.
3. The third connected component L

↓
− of the Lorentz group consists of all trans-

formations L = TG, where G is the arbitrary restricted Lorentz transformation; T
is the time-reversal transformation, determined by the following matrix:

T = ‖lj i‖ =

∥
∥
∥
∥∥
∥
∥
∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

∥
∥
∥
∥∥
∥
∥
∥

.

Transformations of the form of L = TG are called the improper non-
orthochronous transformations. For the improper non-orthochronous transforma-
tions we have

det ‖lj i‖ = −1, l44 � −1.

The set of all transformations L
↑
+ ∪ L

↓
− forms a group.

4. The fourth connected component L
↓
+ of the Lorentz group consists of all

transformations L = JG, where G is the arbitrary restricted Lorentz transformation
and J is the transformation of total reflection determined by the matrix

J = ‖lj i‖ =

∥
∥
∥
∥
∥∥
∥
∥

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥
∥
∥
∥
∥∥
∥
∥

.

Transformations of the form L = JG are called the proper non-orthochronous
transformations. The proper non-orthochronous transformations are defined by
conditions

det ‖lj i‖ = +1, l44 � −1.

The set of all transformations L+ = L
↑
+ ∪ L

↓
+ forms a group called the proper

Lorentz group. This group consists of all Lorentz transformations for which the
equality det ‖lj i‖ = +1 is satisfied.

It is easy to see that the identical transformation I and the transformations of
reflections P , T , J form a finite discrete group in which multiplication is defined by
the equalities

I 2 = P 2 = T 2 = J 2 = I,

PT = T P = J, PI = IP = P, PJ = JP = T ,

T I = IT = T , T J = JT = P, J I = IJ = J. (3.6)
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The commutative group consisting of elements I , P , T , J with multiplica-
tion (3.6), is called the reflection group.

3.1.2 Algebra of the Four-Dimensional Dirac Matrices

In the space E1
4 the minimum order of the matrices of the spintensor components

γi = ‖γ B
Ai‖ (i = 1, 2, 3, 4), satisfying the equation

γiγj + γjγi = 2gij I, (3.7)

is equal to four. In this case the matrices γi are called the Dirac matrices.
The system of sixteen different matrices of the fourth order

I, γi, γij = γ[iγj ], γijk = γ[iγj γk], γijks = γ[iγj γkγs] (3.8)

(for example, for i < j < k < s) is full and linearly independent. Instead of
matrices γijk and γijks in the space E1

4 it is convenient to use the matrices γ 5 and
∗
γ i , which are defined in terms of γi as follows

γ 5 = − 1

24
εijksγiγjγkγs,

∗
γ i = −1

6
εijksγj γkγs, (3.9)

Here εijks are the antisymmetric in all indices contravariant components of the Levi-
Civita pseudotensor1

εijks = −1, if substitution

(
i j k s

1 2 3 4

)
is even ,

εijks = 1, if substitution

(
i j k s

1 2 3 4

)
is odd ,

εijks = 0, if among the indices i, j, k, s at least two

coincide .

1By virtue of definition the components of the Levi-Civita pseudotensor satisfy the following
relations

εpqmnε
ijks = −

∣∣∣
∣∣∣
∣∣
∣

δip δiq δim δin

δ
j
p δ

j
q δ

j
m δ

j
n

δkp δkq δkm δkn
δsp δsq δsm δsn

∣∣∣
∣∣∣
∣∣
∣

, εpqmnε
ijkn = −

∣∣
∣∣∣
∣∣

δip δiq δim

δ
j
p δ

j
q δ

j
m

δkp δkq δkm

∣∣
∣∣∣
∣∣
,

εpqmnε
ijmn = −2

(
δipδ

j
q − δ

j
pδ

i
q

)
, εpjmnε

ijmn = −6δip,

εpqmnε
pqmn = −24.
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Thus ε1234 = −1, ε1234 = 1.
The matrices γijk and γijks are expressed in terms of matrices γ 5,

∗
γ i by the

relations

γijk = −εijks
∗
γ s, γijks = γ 5εijks ,

which can be obtained by contracting definitions (3.9) with components of the Levi-
Civita pseudotensor.

The traces of all γ -matrices are equal to zero:

tr γi = 0, tr γij = 0, tr
∗
γ i = 0, tr γ 5 = 0.

It is easy to calculate also the traces of bilinear products of the γ -matrices

tr
(
γiγ

j
) = 4δji , tr

( ∗
γ i

∗
γ j
) = 4δji ,

tr
(
γ ij γks

) = 4
(
δisδ

j

k − δikδ
j
s

)
,

tr
(
γiγjs

) = 0, tr
(
γjsγi

) = 0,

tr
( ∗
γ iγjs

) = 0, tr
(
γjs

∗
γ i

) = 0,

tr
(
γiγ

5) = 0, tr
(
γ 5γi

) = 0,

tr
( ∗
γ iγ

5) = 0, tr
(
γ 5 ∗

γ i

) = 0,

tr
(
γij γ

5) = 0, tr
(
γ 5γij

) = 0,

tr
( ∗
γ iγj

) = 0, tr
(
γj

∗
γ i

) = 0,

tr
(
γ 5γ 5) = −4. (3.10)

The first relation in (3.10) can be obtained, calculating the trace of Eq. (3.7);
the other equations in (3.10) can be obtained, calculating the trace of Eq. (3.7),

multiplied beforehand by the matrices γi , γij ,
∗
γ i , and γ 5.

For products of the γ -matrices are valid the following relations, which are
contained in identities (1.15) for ν = 2:

γ iγ j = ∗
γ i ∗

γ j = γ ij + gij I,

γ 5 ∗
γ i = − ∗

γ iγ 5 = γ i, γ iγ 5 = −γ 5γ i = ∗
γ i,

γ i ∗
γ j = − ∗

γ iγ j = γ 5gij + 1

2
εijksγks,

γ ij γ 5 = γ 5γ ij = 1

2
εijksγks, γ 5γ 5 = −I,
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∗
γ sγ ij = εsijkγk + gis ∗

γ j − gjs ∗
γ i,

γ ij ∗
γ s = εsijkγk − gis ∗

γ j + gjs ∗
γ i,

γ sγ ij = −εsijk
∗
γ k + gisγ j − gjsγ i ,

γ ij γ s = −εsijk
∗
γ k − gisγ j + gjsγ i ,

γ ij γ ks = γ 5εijks +
(
δimδ

j
n − δ

j
mδin

) (
γmsgnk − γmkgns

)

+
(
gisgjk − gikgjs

)
I. (3.11)

Let us note that the form of Eqs. (3.11) does not depend on the order of matrices
γi , satisfying Eq. (3.7).

The invariant metric spinor E = ‖eBA‖ in the pseudo-Euclidean space E1
4 is

defined by the equation2

γ T
i = −EγiE

−1. (3.12)

up to multiplying by an arbitrary nonzero complex number.
According to Eqs. (1.53) and (1.55) the matrices E, Eγi , Eγij , Eγijk , and Eγijks

have the following symmetry properties

ET = −E, (Eγi)
T = Eγi,

(
Eγij

)T = Eγij ,

(
Eγijk

)T = −Eγijk,
(
Eγijks

)T = −Eγijks . (3.13)

From definitions (3.9) and Eqs. (3.13) it follows also

(
E

∗
γ i
)T = −E

∗
γ i,

(
Eγ 5)T = −Eγ 5. (3.14)

From Eqs. (3.13) it is seen that the matrix of the metric spinor components E in
the space E1

4 is antisymmetric. Therefore we must bear in mind that for contraction
of the components of two spinors the equality takes place

ψAξ
A = −ψAξA,

and for contraction of the metric spinor components the following equalities hold

eABeCDeBD = −eAC, eABeCDeBD = −eAC.

2In physical literature the matrix of the components of the second rank spinor E−1 = ‖eBA‖
is usually denoted by symbol C (in the Dirac theory the matrix C is operator of the charge
conjugation).
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Since the components of the metric spinor eBA are antisymmetric, we see that
the spinor components

εABCD = −eABeCD + eACeBD − eADeBC,

εABCD = −eABeCD + eACeBD − eADeBC (3.15)

are antisymmetric in all indices. It is easy to verify that the components of spinors
εABCD and εABCD are connected by the relations

εABCD = eAA′
eBB ′

eCC ′
eDD′

εA′B ′C ′D′,

εABCD = eAA′eBB ′eCC ′eDD′εA
′B ′C ′D′

.

By virtue of definition (3.15) for contractions of the components εABCD and
εABCD are carried out the equalities

εABCDεEFQH =

∣
∣
∣
∣
∣∣
∣
∣

δEA δEB δEC δED
δFA δFB δFC δFD
δ
Q
A δ

Q
B δ

Q
C δ

Q
D

δHA δHB δHC δHD

∣
∣
∣
∣
∣∣
∣
∣

, εABCDεEFQD =
∣
∣
∣
∣∣
∣

δEA δEB δEC
δFA δFB δFC
δ
Q
A δ

Q
B δ

Q
C

∣
∣
∣
∣∣
∣
,

εABCDεEFCD = 2
(
δEAδFB − δFAδEB

)
, εAFCDεEFCD = 6δEA,

εABCDεABCD = 24.

As it was already noted, the components of the metric spinor eAB are determined
by Eq. (3.12) up to multiplying by an arbitrary nonzero complex number λ �= 0.
Therefore it is always possible to define eAB so that the equality was carried out

ε1234 = −e12e34 + e13e24 − e14e23 = 1. (3.16)

In this case the components εABCD (and εABCD) are the Levi-Civita symbols, which
determine an invariant spinor of the fourth rank in the space E1

4 . This condition
can be accepted as the normalization condition for definition of the components
of the metric spinor eAB ; obviously that as a result of such normalization the
components of the metric spinor are determined up to simultaneous multiplication
of all components eAB only by −1.

The invariant spinor of the second rank βḂA in pseudo-Euclidean space E1
4 is

defined by the equations

γ̇ T
i = −βγiβ

−1, β̇T = β. (3.17)
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The following relations are also valid (see (1.128))

γ̇ T
ij = −βγij β

−1, γ̇ T
ijk = βγijkβ

−1, γ̇ T
ijks = βγijksβ

−1. (3.18a)

It is obvious that from the last two equations in (3.18a) it follows

( ∗
γ T

i

)˙= β
∗
γ iβ

−1,
(
γ̇ 5)T = βγ 5β−1. (3.18b)

From Eqs. (3.17) and (3.18) we see that matrices of the spintensor components βγi ,

βγij , βγijk , βγijks , β
∗
γ i , βγ 5 have the following symmetry properties:

(βγi)
T = − (βγi) ,̇

(
βγij

)T = − (
βγij

)
,̇

(
βγijk

)T = (
βγijk

)
,̇

(
βγijks

)T = (
βγijks

)
,̇

(
β

∗
γ i
)T = (

β
∗
γ i
)
,̇

(
βγ 5)T = (

βγ 5).̇ (3.19)

The symmetry properties (3.13) and (3.19) have invariant character and do not
depend on a specific expression of the matrices γi .

The matrix of the components of the invariant spinor � = ‖�B
Ȧ‖ =

E−1βT in four-dimensional pseudo-Euclidean space E1
4, according to equali-

ties (1.136), (1.137), and (1.141), satisfies the equations

��̇ = I,

γ̇ i = �−1γi�,

( ∗
γ i

)˙= �−1 ∗
γ i�,

γ̇ ij = �−1γij�,

γ̇ 5 = �−1γ 5�.
(3.20)

The Pauli identity (1.19) (with the covariant spinor indices) in the space E1
4 takes

the form

4eDEeBA = −eDAeEB+γiDAγ
i
EB−1

2
γijDAγ

ij
EB− ∗

γ iDA
∗
γ i

EB+γ 5
DAγ

5
EB. (3.21)

The expressions for bilinear products of any spintensors γ are given in
Appendix C.

Many different sets of the specific numerical matrices γi , satisfying Eqs. (3.7),
are known and in different problems it is convenient to use the different presenta-
tions for γi . In particular, if γi are chosen in such a way that γ2, iγ4 are Hermitian
and symmetric, while γ1, γ3 are Hermitian and antisymmetric:

γ T
1 = γ̇ 1,

γ T
1 = −γ1,

γ T
2 = γ̇ 2,

γ T
2 = γ2,

γ T
3 = γ̇ 3,

γ T
3 = −γ3,

γ T
4 = −γ̇ 4,

γ T
4 = γ4,

(3.22)
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then from definitions (3.12) and (3.17) it follows that the invariant spinors E and β

can be defined by the equalities

E = ‖eBA‖ = −iγ2γ4, β = ‖βḂA‖ = iγ 4 = −iγ4. (3.23)

As matrices γi , for example, can be taken the following matrices (the spinor
representation of the matrices γi):

γ1 =

∥∥
∥
∥
∥
∥∥
∥

0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

∥∥
∥
∥
∥
∥∥
∥

, γ2 =

∥∥
∥
∥
∥
∥∥
∥

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

∥∥
∥
∥
∥
∥∥
∥

,

γ3 =

∥
∥∥
∥
∥
∥
∥
∥

0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

∥
∥∥
∥
∥
∥
∥
∥

, γ4 =

∥
∥∥
∥
∥
∥
∥
∥

0 0 i 0
0 0 0 i
i 0 0 0
0 i 0 0

∥
∥∥
∥
∥
∥
∥
∥

. (3.24)

In this case the components of invariant spinors of the second rank E, γ 5, β, and
� can be defined by the matrices

E =

∥∥
∥
∥
∥
∥∥
∥

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

∥∥
∥
∥
∥
∥∥
∥

, γ 5 =

∥∥
∥
∥
∥
∥∥
∥

−i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 i

∥∥
∥
∥
∥
∥∥
∥

,

β =

∥
∥
∥∥
∥
∥
∥
∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥
∥
∥∥
∥
∥
∥
∥

, � =

∥
∥
∥∥
∥
∥
∥
∥

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

∥
∥
∥∥
∥
∥
∥
∥

. (3.25)

Sometimes the other set of the matrices γi is used (standard representation or the
Pauli representation)

γ1 =

∥
∥
∥∥
∥
∥
∥
∥

0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

∥
∥
∥∥
∥
∥
∥
∥

, γ2 =

∥
∥
∥∥
∥
∥
∥
∥

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

∥
∥
∥∥
∥
∥
∥
∥

,

γ3 =

∥
∥
∥
∥
∥∥
∥
∥

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

∥
∥
∥
∥
∥∥
∥
∥

, γ4 =

∥
∥
∥
∥
∥∥
∥
∥

i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

∥
∥
∥
∥
∥∥
∥
∥

. (3.26)
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In this case for the matrices E, γ 5, β, and � we have

E =

∥
∥
∥
∥∥
∥
∥
∥

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

∥
∥
∥
∥∥
∥
∥
∥

, γ 5 =

∥
∥
∥
∥∥
∥
∥
∥

0 0 −i 0
0 0 0 −i
−i 0 0 0
0 −i 0 0

∥
∥
∥
∥∥
∥
∥
∥

,

β =

∥
∥
∥
∥
∥∥
∥
∥

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

∥
∥
∥
∥
∥∥
∥
∥

, � =

∥
∥
∥
∥
∥∥
∥
∥

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

∥
∥
∥
∥
∥∥
∥
∥

. (3.27)

In the four-dimensional pseudo-Euclidean space E1
4 there is the representation in

which all matrices γi are real (the Majorana representation)3

γ1 =

∥
∥
∥
∥∥
∥
∥
∥

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

∥
∥
∥
∥∥
∥
∥
∥

, γ2 =

∥
∥
∥
∥∥
∥
∥
∥

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

∥
∥
∥
∥∥
∥
∥
∥

,

γ3 =

∥
∥
∥
∥
∥
∥∥
∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥
∥
∥
∥
∥
∥∥
∥

, γ4 =

∥
∥
∥
∥
∥
∥∥
∥

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

∥
∥
∥
∥
∥
∥∥
∥

. (3.28)

In this case spintensors E, β, � and γ 5 can be defined as follows

E = −β =

∥
∥
∥
∥
∥∥
∥
∥

0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

∥
∥
∥
∥
∥∥
∥
∥

, γ 5 =

∥
∥
∥
∥
∥∥
∥
∥

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

∥
∥
∥
∥
∥∥
∥
∥

,

� = I =

∥
∥∥
∥
∥
∥
∥∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥
∥∥
∥
∥
∥
∥∥

. (3.29)

3Real representations of the γ -matrices exist in four-dimensional pseudo-Euclidean spaces E1
4 , E2

4 .
In the space E3

4 (and in E2
4 ) there are purely imaginary representations γ -matrices, obtained from

real γ -matrices in spaces E1
4 , E2

4 by multiplication by imaginary unit i = √−1. Therefore in the
spaces E1

4 , E2
4 and E3

4 there are the real spinor representations of corresponding pseudo-orthogonal
groups. In four-dimensional pseudo-Euclidean space E2

4 with the metric signature (+,+,−,−)

there are also real semispinors. In spaces E0
4 , E4

4 do not exist real and imaginary representations
for γi and therefore in these spaces there are no real spinor representations (see in connection with
it also Chap. 1).
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For all definitions (3.25), (3.27), and (3.29) of the metric spinor E the normalization
condition (3.16) is fulfilled.

3.1.3 The Spinor Representations of the Lorentz Group

According to the results of Sect. 1.6.4 the spinor representations of the Lorentz
group O1

4 may be split into four classes.
I. The first class of spinor representations of the Lorentz group can be defined by

the equations

lj iγj = S−1γiS (3.30)

and by one of the normalization condition

a. ST ES = E,

b. ST ES = E signΔ, Δ = det ‖lj i‖,
c. ST ES = E sign (Δl44),

d. ST ES = E sign l44. (3.31)

In this case

ṠT βS = β sign l44. (3.32)

If matrices γi satisfy conditions (3.22), then the spinor transformations SP , ST ,
SJ , corresponding to reflection transformations P , T , J , are defined by the table

a b c d
SP γ4 iγ4 iγ4 γ4

ST i
∗
γ 4

∗
γ 4 i

∗
γ 4

∗
γ 4

SJ iγ 5 iγ 5 γ 5 γ 5

(3.33)

Direct check shows that the spinor transformations SP , ST , SJ for all normaliza-
tion conditions in (3.31) anti-commute with one another:

SP ST = −ST SP , SP SJ = −SJ SP , ST SJ = −SJ ST .

II. The second class of spinor representations of the Lorentz group is defined by
the equations

lj iγj = S−1γiS signΔ (3.34)
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and by one of the normalization conditions in (3.31). The spinor transformations S

and the Hermitian conjugate transformations ṠT for this class of representations are
connected by the relation

ṠT βS = β sign (Δl44). (3.35)

If Eqs. (3.22) are valid, then the spinor transformations SP , ST , SJ , correspond-
ing to the reflections P , T , J , are defined by the table

a b c d

SP i
∗
γ 4

∗
γ 4

∗
γ 4 i

∗
γ 4

ST γ4 iγ4 γ4 iγ4

SJ iγ 5 iγ 5 γ 5 γ 5

(3.36)

The spinor transformations SP , ST , SJ determined by table (3.36) anti-commute
among themselves.

It is easy to show that all spinor representations O1
4 → {±S}, defined by

Eqs. (3.34) and (3.31), are equivalent to the spinor representations, defined by
Eqs. (3.30) and (3.31).

III. Let us define the third class of spinor representations of the Lorentz group by
the equations

lj iγj = S−1γiS sign
(
Δl44

)
(3.37)

and by one of the normalization conditions (3.31). For the considered spinor
representations we have

ṠT βS = β signΔ. (3.38)

Let us write out also the spinor transformations SP , ST , SJ , corresponding to the
reflection transformations P , T , J :

a b c d

SP i
∗
γ 4

∗
γ 4

∗
γ 4 i

∗
γ 4

ST i
∗
γ 4

∗
γ 4 i

∗
γ 4

∗
γ 4

SJ I I iI iI

(3.39)

Formulas (3.39) are obtained under assumption (3.22). The spinor transforma-
tions SP , ST , SJ defined by table (3.39) commute among themselves

SP ST = ST SP , SP SJ = SJ SP , ST SJ = SJ ST .
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IV. The fourth class of spinor representations of the Lorentz group is defined by
the equations

lj iγj = S−1γiS sign l44 (3.40)

and by one of the normalization conditions (3.31). Under any condition of the
normalization (3.31) due to Eqs. (3.40) it is fulfilled also the equation

ṠT βS = β. (3.41)

If Eqs. (3.22) are valid, then the spinor transformations SP , ST , SJ corresponding
to the reflection transformations P , T , J are defined as follows

a b c d
SP γ4 iγ4 iγ4 γ4

ST γ4 iγ4 γ4 iγ4

SJ I I iI iI

(3.42)

Under any condition of the normalization, the spinor transformations SP , ST , SJ

defined by table (3.42) commute with each other.
All spinor representations O1

4 → {±S}, defined by Eqs. (3.40) and (3.31),
are equivalent to the spinor representations defined by Eqs. (3.37) and (3.31)
respectively.

The spinor representations described above contain eight nonequivalent repre-
sentations; for example, eight representations in I and III, I and IV, II and III, II and
IV classes are nonequivalent.

It is obvious that the spinor representation of the restricted Lorentz group is the
same in all classes of the spinor representations considered above and is defined by
the equations

lj iγj = S−1γiS, ST ES = E. (3.43)

Similar to the derivation of Eq. (1.69) in the complex Euclidean spaces, we
obtain that the spinor transformation corresponding to the small restricted Lorentz
transformation

lj i = δ
j
i + δεi

j ,

has the form

S = I + 1

4
γ ij δεij . (3.44)

It is easy to find the spinor transformations S in an explicit form for some finite
restricted Lorentz transformations. In particular, for restricted Lorentz transforma-
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tion — rotation through an angle ϕ in the plane passing through the basis vectors
Эα and Эβ (α, β =1, 2, 3; α �= β)

Э′
α = Эα cosϕ + Эβ sinϕ,

Э′
β = −Эα sin ϕ + Эβ cosϕ,

we have

S = I cos
ϕ

2
+ γ αβ sin

ϕ

2
. (3.45)

It is seen from formula (3.45) that under continuous rotation of basis Эα through
the angle 2π , the matrix S changes a sign:

S(ϕ + 2π) = −S(ϕ).

But the rotation through 2π coincides with the identical transformation; thus,
to the transformation of rotation through the angle ϕ formula (3.45) puts in
correspondence two matrices S and −S.

For the Lorentz transformation (boost or hyperbolic rotation through the angle ϕ

in the plane passing through the basis vectors Эα and Э4)

Э′
α = Эα coshϕ − Э4 sinhϕ,

Э′
4 = −Эα sinhϕ + Э4 coshϕ,

we have

S = I cosh
ϕ

2
− γ 4α sinh

ϕ

2
.

3.1.4 Spinors in the Pseudo-Euclidean Space E1
4

Invariant geometric object ψ = ±ψAεA, where the pairs of contravariant compo-
nents ±ψA and spinbases ±{εA} are referred to an orthonormal basis Эi in the
pseudo-Euclidean space E1

4 and under the Lorentz transformation of bases Эi are
transformed according to the spinor representation of the Lorentz group, is called a
first-rank spinor in the pseudo-Euclidean space E1

4.
The covariant components ψA of the spinor ψ are defined by means of the

invariant metric spinor E = ‖eAB‖:

ψA = eABψB. (3.46)
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Note that the contraction in the right-hand side of Eq. (3.46) is performed over the
second index of eAB .

The conjugate spinor ψ+ in the space E1
4 is defined by the covariant components

ψ+
A or contravariant components ψ+A, which are expressed in terms of the complex

conjugate components of spinor ψ̇B by the equalities

ψ+
A = βḂAψ̇

B, ψ+A = �A
Ḃψ̇

B . (3.47)

The components of the second rank invariant spinors � = ‖�A
Ḃ‖ and β = ‖βḂA‖

in Eqs. (3.47) are connected by the relations

�A
Ḃ = eACβḂC, βḂA = eAC�

C
Ḃ

or, in the matrix form

� = E−1βT , β = (
E�

)T

From Eqs. (3.31), (3.32), (3.35), (3.38), and (3.41) it follows that components βḂA,
�A

Ḃ determine the spinors of the second rank with one dotted index, which are
invariant, in any case, under the continuous Lorentz transformations.

Definitions (3.46) and (3.47) of the covariant components ψ+
A , ψA, and the

contravariant components ψ+A can be written in the matrix form

ψ+ = ψ̇T β, ψ̃ = (Eψ)T = −ψT E, ψ̄ = �ψ̇. (3.48)

Here ψ+ and ψ̃ denote the row of the covariant components ψ+
A and ψA

respectively; ψ̄ is the column of the contravariant components of conjugate spinor
ψ+A.

Since ��̇ = I (see (3.20)), we obtain that in the space E1
4 the conjugation of a

conjugate spinor gives

(ψ+)+ = ψ.

3.2 Tensor Representation of Spinors
in the Pseudo-Euclidean Space E1

4

3.2.1 Representation of Spinors in the Space E1
4 by Complex

Tensors

In the pseudo-Euclidean space E1
4 an expansion of the contravariant components of

the second-rank spinor in invariant spintensors γ has the form

ψBA = 1

4

(
− FeBA + Fjγ BA

j + 1

2
Fjsγ BA

js + ∗
Fj ∗

γ BA
j + ∗

Fγ 5BA

)
, (3.49)
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where the tensor components F are expressed in terms of the spinor components
ψBA as follows

F = eBAψ
BA, F j = −γ

j
BAψ

BA, F js = γ
js
BAψ

BA,

∗
Fj = ∗

γ
j
BAψ

BA,
∗
F = −γ 5

BAψ
BA.

If the components of a spinor ψBA are symmetric ψBA = ψAB = ψ(BA), then
by virtue of the symmetry properties of spintensors (3.14), only the terms with Fj

and Fjs remain in formula (3.49):

ψ(BA) = 1

4

(
Fjγ BA

j + 1

2
Fjsγ BA

js

)
.

If the components of spinor ψBA are antisymmetric ψBA = −ψAB = ψ [BA],
then formula (3.49) takes the form

ψ [BA] = 1

4

(
− FeBA + ∗

Fj ∗
γ BA

j + ∗
Fγ 5BA

)
.

From the symmetry properties (3.14) and (3.13) it follows that the complex
tensors C, defined by the spinor ψ , in the pseudo-Euclidean space E1

4 consist only
of the vector and antisymmetric second-rank tensor

C = {CiЭi , C
ijЭiЭj }.

The components Ci , Cij in an orthonormal basis Эi are defined by the equalities

Ci = γ i
BAψ

BψA, Cij = γ
ij
BAψ

BψA (3.50)

or, in the matrix notations

Ci = ψT Eγ iψ, Cij = ψT Eγ ijψ. (3.51)

Here ψ is the column of the contravariant components of the first-rank spinor ψA.
Contracting identities (C.1)4 with the spinor componentsψBψAψDψE with respect
to the indices B, A, D, E and using definitions (3.50), we obtain that the components
Ci , Cij satisfy the following invariant algebraic equations [37]

CijC
ij = 0, (3.52a)

εijksC
ijCks = 0, (3.52b)

4See Appendix C.
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CiCj + Ci
sC

sj = 0. (3.52c)

Among Eqs. (3.52) there are the six independent equations. For example,
Eqs. (3.52a), (3.52b) and four equations in (3.52c) for i = j are independent.

By virtue of Eqs. (3.52) also the equations hold

CiC
i = 0, CiC

ij = 0, εijksC
jCks = 0, (3.53)

which can be obtained by contracting identities (C.1) with the spinor components
ψAψBψDψE .

According to the general formulas (1.191) and (1.195) the components of spinor
ψA are defined by the tensor components Ci , Cij as follows

ψA = ψBAηB

±√ψCDηCηD

, ψBA = 1

4

(
−Ciγ BA

i + 1

2
Cij γ BA

ij

)
. (3.54)

Here ηC (C = 1, 2, 3, 4) are arbitrary complex numbers satisfying the condition
ψCDηCηD �= 0; the components of the spintensors γ BA

i and γ BA
ij are defined by the

relations

γ BA
i = eACγ B

Ci, γ BA
ij = eACγ B

Cij ,

‖γ B
Ci‖ = γi, ‖γ B

Cij‖ = γ[iγj ].

The right-hand side of the first formula in (3.54) does not depend on the choice of
the components ηC , for which ψCDηCηD �= 0.

Instead of the first formula in (3.54) we can use the simpler relation

ψA = ψBA

±√ψBB
,

where we do not sum over B. The right-hand side of this formula does not depend
on the value of the index B, for which ψBB �= 0.

The second formula in (3.54) for the symmetric components ψBA can be written
in the matrix form

‖ψBA‖ = 1

4

(
Ciγi − 1

2
Cij γiγj

)
E−1.
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Equations (3.50) and (3.54), which realize one-to-one connection between the
spinor ψ and the tensors C, are invariant with respect to the choice of orthonormal
basis Эi in the space E1

4 . Thus, it is valid the following theorem.5

Theorem ([74, 75]) The spinor of the first rank ψ in the pseudo-Euclidean space
E1

4 with components ψA defined up to a common sign, is equivalent to the complex
vector and the complex antisymmetric tensor of the second rank, whose components
Ci , Cij satisfy the six independent algebraic equations in (3.52).

It follows from Eqs. (3.52) that the components Cij determine an arbitrary
antisymmetric tensor with zero invariants, while the vector components Ci are
defined by Cij up to the common sign. By means of definitions (3.51) and equation
γ 5γ iγ 5 = γ i , following from the third equation in (3.11), it is easy to find that
if the tensor components Ci , Cij determine the components of a first-rank spinor
ψ , then the tensor components −Ci , Cij determine the spinor components iγ 5ψ .
Therefore if only components of an antisymmetric tensor Cij with zero invariants

CijC
ij = 0, εijksC

ijCks = 0 (3.55)

are given, then they determine two spinors of the first rank with components ψ and
iγ 5ψ .

If spintensors E and γi are defined by matrices (3.24) and (3.25), then the tensor
components Ci , Cij , according to definitions (3.51), are defined by the equalities

C1 = 2i
(
ψ1ψ3 − ψ2ψ4),

C2 = −2
(
ψ1ψ3 + ψ2ψ4),

C3 = −2i
(
ψ1ψ4 + ψ2ψ3),

C4 = 2i
(− ψ1ψ4 + ψ2ψ3),

C14 = ψ1ψ1 − ψ2ψ2 + ψ3ψ3 − ψ4ψ4,

C24 = i
(
ψ1ψ1 + ψ2ψ2 + ψ3ψ3 + ψ4ψ4),

5A connection between the first-rank spinors and complex tensors C in the space E1
4 for the

first time was considered, apparently, by Whittaker [73]. The Whittaker formulas define each
component of spinor ψA in terms of the tensor components C up to the sign and therefore do
not carry out a one-to-one connection between the spinors and the tensors C. In subsequent papers
of various authors some particular cases have been considered (real and two-components spinors in
the four-dimensional and three-dimensional spaces), but the explicit formulas, that realize one-to-
one connection between spinors and tensors, have not been obtained. After a number of attempts
to establish such connection it was appeared opinion on not reducibility of the first-rank spinor to
tensors and “elementary nature” of the spinor. The one-to-one invariant connection between spinors
and various systems of tensors has been established in [74, 75] in the spaces of any dimension.
Various aspects of the connection between tensors and spinors were considered, for example, in
[15, 35, 57, 67–70]. A geometric illustration of two-component spinors in the four-dimensional
space is given in [50].
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C34 = −2
(
ψ1ψ2 + ψ3ψ4),

C23 = i
(
ψ1ψ1 − ψ2ψ2 − ψ3ψ3 + ψ4ψ4),

C31 = −ψ1ψ1 − ψ2ψ2 + ψ3ψ3 + ψ4ψ4,

C12 = 2i
(− ψ1ψ2 + ψ3ψ4). (3.56)

In this case the relations expressing the symmetric components of the second
rank spinor ψBA = ψBψA in terms of the components of tensors Ci , Cij , have the
form

ψ11 = 1

4

(− C31 − iC23 + C14 − iC24),

ψ22 = 1

4

(− C31 + iC23 − C14 − iC24),

ψ33 = 1

4

(
C31 + iC23 + C14 − iC24),

ψ44 = 1

4

(
C31 − iC23 − C14 − iC24),

ψ14 = i

4

(
C3 + C4),

ψ31 = −1

4

(
C2 + iC1),

ψ12 = 1

4

(− C34 + iC12),

ψ23 = i

4

(
C3 − C4),

ψ24 = 1

4

(− C2 + iC1),

ψ34 = −1

4

(
C34 + iC12).

3.2.2 Representation of Spinors in Pseudo-Euclidean Space
E1

4 by Real Tensors

The system of real tensors D defined by the first-rank spinor ψ , in pseudo-Euclidean
space of E1

4 consists of scalar Ω , vector j = j iЭi and antisymmetric tensors of
the second, third and fourth ranks M = MijЭiЭj , S = SijkЭiЭjЭk , and N =
NijksЭiЭjЭkЭs , whose components are defined by the following relations

Ω = −eABψ
+AψB, j i = −iγ i

ABψ
+AψB,

Mij = −iγ ij
ABψ+AψB, Sijk = −γ

ijk
ABψ+AψB,

Nijks = −γ
ijks

AB ψ+AψB. (3.57)
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Let us write down definition (3.57) also in the matrix form

Ω = ψ+ψ, j i = iψ+γ iψ,

Mij = iψ+γ ijψ, Sijk = ψ+γ ijkψ,

Nijks = ψ+γ ijksψ. (3.58)

Here ψ+ = ψ̇T β is the row of the covariant components of the conjugate spinor
ψ+

A .
Instead of the components of tensors Sijk , Nijks it is convenient to use the

components of the pseudo-vector Si and pseudo-scalar N , which are connected with
Sijk , Nijks by the relations

Si = −1

6
εijksS

jks , Sjks = Siε
ijks ,

N = − 1

24
εijksN

ijks , Nijks = Nεijks .

The pseudo-scalar N and the components of the pseudo-vector Si are expressed
in terms of the spinor components ψ as follows

Si = ψ+ ∗
γ iψ, N = ψ+γ 5ψ. (3.59)

From definitions (3.57) and (3.59) it follows that the components of tensors
D satisfy the Pauli–Fierz invariant algebraic identities, which can be obtained
by contracting identities (C.1) with components of spinor ψ+BψAψ+DψE with
respect to the indices B, A, D, E:

a. jij
i = −Ω2 − N2,

b. SiS
i = Ω2 + N2,

c. Sij
i = 0,

d.
1

2
MijM

ij = Ω2 − N2,

e.
1

4
εijksM

ijMks = 2ΩN,

f. Ωji = 1

2
εijksSjMks,

g. Nj i = −SjM
ij ,

h. ΩSi = 1

2
εijksj

jMks,
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i. NSi = −jnMin,

j. j ij j = SiSj + Mi
sM

js − Ω2gij ,

k. ΩMij + 1

2
NεijksM

ks = −εijksj
kSs,

l. MijMks =
(
Ω2 + N2

) (
gikgjs − gisgjk

)
− 1

4
εijpqεksmnMpqMmn

+ gik
(
j sj j − SsSj

)
− gjk

(
j sj i − SsSi

)
− gis

(
jj jk − SjSk

)

+ gjs
(
j ij k − SiSk

)
,

m. Mi
jM

sj − 1

4
gisMjqM

jq = 1

2
gis

(
Ω2 + N2)+ j ij s − SiSs . (3.60)

A connection between the components of the spinor ψ and the components of
tensors D in the space E1

4 is given by the following formulas [74, 75]

ψA = ψḂAη̇B√
ψĊDη̇CηD

, (3.61)

ψḂA = 1

4

(
ΩβAḂ − ij sγ AḂ

s + i

2
Mjsγ AḂ

js − Si ∗
γ AḂ

i + Nγ 5AḂ

)
,

where ηC (C = 1, 2, 3, 4) are arbitrary complex numbers, satisfying the condition
ψĊDη̇CηD �= 0; the components of spintensors γ are defined as follows

γ AḂ
s = γ A

Csβ
CḂ, γ AḂ

js = γ A
Cjsβ

CḂ,

∗
γ AḂ

i = ∗
γ A

Ciβ
CḂ, γ 5AḂ = γ 5A

CβCḂ.

Here the components of the invariant spinor β−1 = ‖βAḂ‖ are defined by
Eqs. (3.17).

The second formula (3.61) in the matrix notations has the form

‖ψḂA‖T = 1

4

(
ΩI − ij sγs + i

2
Mjsγjs − Si ∗

γ i + Nγ 5
)
β−1.

Instead of the first formula in (3.61) it is convenient to use the relation

ψA = ψḂA

√
ψḂB

exp iϕ,
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where ϕ is an arbitrary real number.
The tensors C, D are connected by the following cross equations, which

are obtained by contraction of the identities (C.1) with the spinor components
ψ+BψAψDψE with respect to the indices B, A, D, E:

a. CiS
i = 0,

b. Cij
i = 0,

c. CijM
ij = 0,

d. εijksC
ijMks = 0,

e. ΩCi = 1

2
εijksSjCks = iCjM

ij = iCsijs,

f. NCi = − i

2
εijksjjCks = i

2
εijksCjMks = −Cij Sj ,

g. ΩCij + 1

2
εijksNCks = −εijksCkSs,

h. εijksCkSs = i
(
Cijj − Cj j i

)
,

i. ΩCij − 1

2
εijksNCks = i

(
Ci

sM
js − Cj

sM
is
)
,

j. Cij j + Cj j i = CisMj
s + CjsMi

s. (3.62)

From definitions (3.23), (3.47), and (3.58) it follows that for any nonzero spinor
ψ the vector component j4 is positive

j4 = ψ̇1ψ1 + ψ̇2ψ2 + ψ̇3ψ3 + ψ̇4ψ4 > 0.

The condition j4 > 0 is not connected with a specific choice of the Dirac matrices
γi .

Since the spinor ψ is fully defined by the complex tensors with components Ci

and Cij , it is clear that the tensors with the real components Ω , j i , Mij , Si , N must
be fully defined in terms of Ci and Cij . The respective equations have the form
(for unique definition Ω , j i , Mij , Si , N in terms of Ci and Cij we must take into
account that j4 > 0):

a. 4Ω2 = ĊiC
i − 1

2
Ċij C

ij ,

b. 4Ωji = i
(
−ĊjC

ij + Cj Ċ
ij
)
,

c. 4ΩMij = iδijks

(
ĊkCs − ĊnkCn

s
)
,
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d. 4ΩSi = −1

2
εijks

(
ĊjCks + Cj Ċks

)
,

e. 4ΩN = −1

4
εijks Ċ

ijCks,

f. 4Nji = i

2
εijks

(−ĊjCks + Cj Ċks

)
,

g. 2εijksNMks = iδijks

(
ĊkCs + ĊnkCn

s
)
,

h. 4NSi = ĊjC
ij + Cj Ċ

ij , (3.63)

i. 4N2 = ĊiC
i + 1

2
Ċij C

ij ,

j. 4j ij s = ĊiCs + CiĊs + Ċij Cs
j + Cij Ċs

j

− gsi

(
ĊjC

j + 1

2
ĊjnC

jn

)
,

k. 4jnMqj = δ
qj

ks

[
1

2
ĊksCn + 1

2
CksĊn − ĊkCsn − CkĊsn

+ gns
(
ĊmkCm + CmkĊm

) ]
,

l. 4jqSs = i

4
gqsεjkmnĊ

jkCmn + iεqsjnĊjCn

− i

2

(
εqjkmĊs

j + εsjkmĊq
j

)
Ckm,

m. 4MijMs
j = −gsi

(
ĊjC

j + 1

2
ĊjmCjm

)
+ 2

(
ĊiCs + ĊsCi

)
,

n. 4SiSj = −ĊiCj − ĊjCi + CinĊj
n + CjnĊi

n

+ gij

(
ĊkC

k − 1

2
ĊnsC

ns

)
,

o. 4SmMij = i

[
1

2
εimpq

(
ĊpqC

j − ĊjCpq

)

− 1

2
εjmpq

(
ĊpqC

i − ĊiCpq

)
+ εijks

(
Ċk

mCs − ĊsCk
m
)
]
.

Here δ
ij
ks = δikδ

j
s − δisδ

j
k , the complex conjugate components Ċi , Ċij are expressed

in terms of the components of the conjugate spinor

Ċi = −γ i
BAψ

+Bψ+A, Ċij = −γ
ij

BAψ
+Bψ+A.
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Relations (3.63) are obtained by contraction of identities (C.1) with the spinor
components ψBψ+Aψ+DψE .

If the matrices γi and β are defined by equalities (3.24) and (3.25), then the
components of the real tensors D are expressed in terms of the components of the
spinor ψA and the complex conjugate spinor ψ̇A by the equalities

Ω = ψ̇1ψ3 + ψ̇2ψ4 + ψ̇3ψ1 + ψ̇4ψ2,

j1 = ψ̇1ψ2 + ψ̇2ψ1 − ψ̇3ψ4 − ψ̇4ψ3,

j2 = i
(− ψ̇1ψ2 + ψ̇2ψ1 + ψ̇3ψ4 − ψ̇4ψ3),

j3 = ψ̇1ψ1 − ψ̇2ψ2 − ψ̇3ψ3 + ψ̇4ψ4,

j4 = ψ̇1ψ1 + ψ̇2ψ2 + ψ̇3ψ3 + ψ̇4ψ4,

M23 = −ψ̇1ψ4 − ψ̇2ψ3 − ψ̇3ψ2 − ψ̇4ψ1,

M31 = i
(
ψ̇1ψ4 − ψ̇2ψ3 + ψ̇3ψ2 − ψ̇4ψ1),

M12 = −ψ̇1ψ3 + ψ̇2ψ4 − ψ̇3ψ1 + ψ̇4ψ2,

M14 = i
(− ψ̇1ψ4 − ψ̇2ψ3 + ψ̇3ψ2 + ψ̇4ψ1),

M24 = −ψ̇1ψ4 + ψ̇2ψ3 + ψ̇3ψ2 − ψ̇4ψ1,

M34 = i
(− ψ̇1ψ3 + ψ̇2ψ4 + ψ̇3ψ1 − ψ̇4ψ2),

S1 = −ψ̇1ψ2 − ψ̇2ψ1 − ψ̇3ψ4 − ψ̇4ψ3,

S2 = i
(
ψ̇1ψ2 − ψ̇2ψ1 + ψ̇3ψ4 − ψ̇4ψ3),

S3 = −ψ̇1ψ1 + ψ̇2ψ2 − ψ̇3ψ3 + ψ̇4ψ4,

S4 = −ψ̇1ψ1 − ψ̇2ψ2 + ψ̇3ψ3 + ψ̇4ψ4,

N = i
(
ψ̇1ψ3 + ψ̇2ψ4 − ψ̇3ψ1 − ψ̇4ψ2). (3.64)

The components ψḂA = ψ̇BψA in this case are expressed in terms of the real
tensor components D as follows:

ψ 1̇1 = 1

4

(
j4 + j3 − S4 − S3),

ψ 2̇2 = 1

4

(
j4 − j3 − S4 + S3),

ψ 3̇3 = 1

4

(
j4 − j3 + S4 − S3),

ψ 4̇4 = 1

4

(
j4 + j3 + S4 + S3),
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ψ 1̇2 = 1

4

(
j1 + ij2 − S1 − iS2),

ψ 3̇4 = 1

4

(− j1 − ij2 − S1 − iS2),

ψ 1̇3 = 1

4

(
Ω − iN − M12 + iM34),

ψ 2̇4 = 1

4

(
Ω − iN + M12 − iM34),

ψ 1̇4 = 1

4

(− M24 + iM14 − M23 − iM31),

ψ 2̇3 = 1

4

(
M24 + iM14 − M23 + iM31). (3.65)

Along with the tensors C and D, defined by equalities (3.50) and (3.58), in the
sequel we shall use the real tensors with components ρ, ui , μij , η defined with the
aid of the tensor components D:

ρ = +
√
Ω2 + N2,

ρ exp iη = Ω + iN,

ρui = j i,

ρμij = ΩMij + 1

2
εijksNMks (3.66)

and the complex tensors Z with components Zi , Zij defined with the aid of the
tensor components C and D:

ρZi = Ci, ρZij = ΩCij + 1

2
εijksNCks . (3.67)

Definitions (3.66) and (3.67) make a sense if Ω2 + N2 �= 0.
By virtue of the equation (k) in (3.60) the tensor components ρμij are expressed

also in terms of the vector components ji and Si :

ρμij = −εijksjkSs . (3.68)

It is easy to see that the tensor components Cij are expressed in terms of Zij and
Ω , N :

Cij = 1

ρ

(
ΩZij − 1

2
εijksNZks

)
. (3.69)
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From Eqs. (3.60) and definitions (3.66) it follows that the components of the real
tensors ρ, ui , μij satisfy the following algebraic equations

uiu
i = −1, ujμ

ij = 0,

εijksμ
ijμks = 0,

1

2
μijμ

ij = ρ2,

Sjμij = ρ2ui,
1

2
εijksu

jμks = Si . (3.70)

From Eqs. (3.52), (3.53), and definitions (3.67) it follows that the components of
the complex tensors Zi , Zij satisfy the invariant algebraic equations of the form

ZiZ
i = 0, ZiŻ

i = 2, ZijZ
ij = 0, Z[ijZks] = 0,

ZiZ
ij = 0, Z[iZjk] = 0, ρ2ZiZj + ZisZs

j = 0.

Using Eqs. (3.63), it is possible to obtain an expression of the real tensor
components ρ, ui , Si , μij in terms of the components of the complex tensors Zi ,
Zij :

ρ2 = −1

4
Zij Ż

ij , ρui = − i

2
Zij Ż

j , Si = −1

4
εijksZ

ksŻj ,

ρμij = i

2

(
ZjsŻ

s
i − ZisŻ

s
j

) = i

2
ρ2(− ZiŻj + ZjŻi

)
.

The components of tensors ρ, ui , Si , μij and the components of tensors Zi , Zij

are also connected by the equations

SiZ
ij = 0, u[iZjk] = 0, Z[iμjk] = 0,

ρ2Zi = 1

2
εijksSjZks = iρusZ

si = iρZjμ
ij

and

Zij = −εijksZkSs = i
(− Zijj + Zjj i

)
.

3.2.3 Representation of Two Spinors by Systems of Tensors

Tensors K determined by the first-rank spinors ψ and χ in the space E1
4 , consist of

the following tensors K = {K,Ki,Kij ,Kijk,Kijks}.
The tensor components K may be determined by the equalities

K = eABχAψB, Kj = iγ j
ABχ

AψB, Kjs = iγ js
ABχAψB,

Kijk = γ
ijk
ABχAψB, Kijks = γ

ijks
AB χAψB. (3.71)
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The complex conjugate components of tensors K̇ are expressed in terms of the
conjugate spinor components

K̇ = −eABχ
+Aψ+B, K̇j = iγ j

ABχ
+Aψ+B, K̇js = iγ js

ABχ
+Aψ+B,

K̇ijk = −γ
ijk
ABχ+Aψ+B, K̇ijks = −γ

ijks
AB χ+Aψ+B.

Instead of the components of tensors Kijk , Kijks it is convenient to use also the

dual components
∗
Ki ,

∗
K:

∗
Ki = −1

6
εijksK

jks = ∗
γ ABiχ

AψB, Kjks = ∗
Kiε

ijks ,

∗
K = − 1

24
εijksK

ijks = γ 5
ABχ

AψB, Kijks = ∗
Kεijks . (3.72)

An expansion of the spinor components χAψB in system invariant spintensors γ

has the form

χAψB = 1

4

(
− KeAB + iKjγAB

j − i

2
Kij γ AB

ij + ∗
Kj ∗

γ AB
j − ∗

Kγ 5AB
)
.

The relations expressing spinor ψ in terms of the tensors K, D′ and spinor χ+,
have the form

4Ω ′ψB =
(

− KeAB + iKjγAB
j − i

2
Kij γ AB

ij + ∗
Kj ∗

γ AB
j − ∗

Kγ 5AB

)
χ+
A ,

4j ′iψB =
[(

iKgij + Kij
)
γ CB
j + 1

2

(− Ksgik + Kkgis + i
∗
Kjε

ijks
)
γ CB
ks

+
(

− i
∗
Kgij − 1

2
εijksKks

)
∗
γ CB

j + i
∗
Kiγ 5CB + KieCB

]
χ+
C ,

4M ′ijψB =
{
(
i

∗
Kkε

ijks − Kjgis + Kigjs
)
γ CB
s +

[
− i

2

∗
Kεijks

+ i

2
K
(
gikgjs − gisgjk

)+ Kjsgik − Kisgjk

]
γ CB
ks + (

Kkε
ijks

+ i
∗
Kjgis − i

∗
Kigjs

) ∗
γ CB

s + Kij eCB + 1

2
Kksε

ijksγ 5CB

}
χ+
C ,

4S′iψB =
[

− ∗
KieCB +

( ∗
Kgij − i

2
εijksKks

)
γ CB
j + 1

2

(− iKjε
ijks

+ ∗
Ksgik − ∗

Kkgis
)
γ CB
ks + (

Kgij − iKij
) ∗
γ CB

j − iKiγ 5CB

]
χ+
C ,
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4N ′ψB =
(

− ∗
KeCB + ∗

Kjγ CB
j − i

4
εijksKij γ

CB
ks − iKj ∗

γ CB
j + Kγ 5CB

)
χ+
C .

(3.73)

Let us give also an expression of the spinor components ψ in terms of the
components of tensors K, C′ and spinor χ :

C′jψ = −( ∗
Kjγ 5 + iKsγ

sj
)
χ =

(
− iKjI + 1

2
εjspq

∗
Ksγpq

)
χ

=
(
Kγ j − i

2
εjpqsKpq

∗
γ s

)
χ =

( ∗
K

∗
γ j + iKsjγs

)
χ,

C′
ijψ =

[
− iKij I + 1

2
εijks

(
− ∗

Kγ ks + ∗
Kkγ s − ∗

Ksγ k
)]

χ

=
[
Kγij + i

2
εijks

(
Kksγ 5 + Kk ∗

γ s − Ks ∗
γ k
)]

χ. (3.74)

By virtue of definitions (3.71) and (3.72) the tensor components K satisfy the
following equations

KiK
i = − ∗

Ki

∗
Ki = −K2 − ∗

K2, Ki

∗
K

i

= 0,

1

2
KijK

ij = K2 − ∗
K2,

1

4
εijksK

ijKks = 2K
∗
K,

KKi = 1

2
εijks

∗
KjKks, K

∗
Ki = 1

2
εijksKjKks,

∗
KKi = − ∗

KjK
ij ,

∗
K

∗
Ki = −KjK

ij ,

KiKj = ∗
Ki

∗
Kj + Ki

sK
js − K2gij ,

∗
KKij − 1

2
εijksKKks = −Ki

∗
Kj + Kj

∗
Ki,

KijKmn = (
K2 + ∗

K2)(gimgjn − gingjm
)− 1

4
εijksεmnpqKksKpq

+gim
(
KjKn − ∗

Kj
∗
Kn

)− gjm
(
KiKn − ∗

Ki
∗
Kn

)

−gin
(
KjKm − ∗

Kj
∗
Km

)+ gjn
(
KiKm − ∗

Ki
∗
Km

)
. (3.75)

The tensors K and C are connected by the following equations

KiC
i = 0,

∗
KiC

i = 0,

KijC
ij = 0, εijksK

ijCks = 0,
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KCi = 1

2
εijks

∗
KjCks = iKijCj = −iKjC

ij ,

∗
KCi = − ∗

KjC
ij = i

2
εijksKksCj = −1

2
εijksKjCks,

KCij + 1

2
εijks

∗
KCks = −εijksCk

∗
Ks,

εijksCk

∗
Ks = i

(
CiKj − CjKi

)
,

KCij − 1

2
εijks

∗
KCks = i

(
Ci

sK
js − Cj

sK
is
)
,

KiCj + KjCi = Ki
sC

js + Kj
sC

is . (3.76)

Let us give also the relations expressing the tensors D and D′ in terms of the
tensors K:

a. 4Ω ′Ω = −K̇K + K̇iK
i − 1

2
K̇ijK

ij − ( ∗
Ki

)˙∗
Ki + ( ∗

K
)˙∗K,

b. 4Ω ′j i = −K̇iK − K̇Ki − iK̇siKs + iK̇sK
si

− 1

2
εijks

[
K̇ks

∗
Kj + ( ∗

Kj

)
K̇ks

]+ i
( ∗
Ki
)˙∗
K − i

( ∗
K
)˙∗Ki,

c. 4Ω ′Mij = δ
ij

ks

[
− 1

2
K̇ksK − 1

2
K̇Kks + iK̇kKs − i

( ∗
Kk

)˙∗Ks

− iK̇nkKn
s

]
+ εijks

[
( ∗
Ks

)
K̇k + K̇k

∗
Ks + 1

2
K̇ks

∗
K + 1

2

( ∗
K
)
K̇ks

]
,

d. 4Ω ′Si = −( ∗
Ki
)
K̇ − K̇

∗
Ki − i

( ∗
K
)
K̇i + iK̇i

∗
K

+ iK̇ij
∗
Kj − i

( ∗
Kj

)
K̇ij − 1

2
εijks

(
K̇sKjk + K̇jkKs

)
,

e. 4Ω ′N = −( ∗
K
)
K̇ − K̇

∗
K − i

( ∗
Ki

)
K̇i + iK̇i

∗
Ki − 1

4
εijksK̇ijKks,

f. 4N ′Ω = −( ∗
K
)
K̇ − K̇

∗
K + i

( ∗
Ki

)
K̇i − iK̇i

∗
Ki − 1

4
εijksK̇ijKks,

g. 4N ′j i = −i
( ∗
Ki
)
K̇ + iK̇

∗
Ki − ( ∗

K
)
K̇i − K̇i

∗
K

+ K̇ij
∗
Kj + ( ∗

Kj

)
K̇ij + i

2
εijks

(− K̇sKjk + K̇jkKs

)
,

h. 4N ′Mij = δ
ij
ks

[
− 1

2
K̇ks

∗
K − 1

2

( ∗
K
)
K̇ks + 1

2
εknqrK̇s

nKqr + K̇k
∗
Ks
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+ ( ∗
Ks

)
K̇k

]
+ εijks

[
i
( ∗
Kk

)˙∗Ks − iK̇kKs − 1

2
K̇ksK − 1

2
K̇Kks

]
,

i. 4N ′Si = −iK̇iK + iK̇Ki + K̇ijKj + K̇jK
ij

− i

2
εijks

[( ∗
Ks

)
K̇jk − K̇jk

∗
Ks

]− ( ∗
Ki
)˙∗K − ( ∗

K
)˙∗
Ki,

j. 4N ′N = K̇K + K̇iK
i + 1

2
K̇ijK

ij − ( ∗
Ki

)˙∗
Ki − ( ∗

K
)˙∗K,

k. 4j ′iΩ = K̇iK + K̇Ki − iK̇siKs + iK̇sK
si

+ 1

2
εijks

[
K̇ks

∗
Kj + ( ∗

Kj

)
K̇ks

]+ i
( ∗
Ki
)˙∗
K − i

( ∗
K
)˙∗Ki,

l. 4j ′ij j = −iK̇ijK + iK̇Kij + K̇iKj + K̇jKi + ( ∗
Ki
)˙∗Kj + ( ∗

Kj
)˙∗
Ki

+ K̇i
sK

js + K̇jsKi
s − gij

[
K̇K + K̇sK

s + 1

2
K̇ksK

ks + ( ∗
Ks

)˙∗Ks

+ ( ∗
K
)˙∗
K

]
+ εijks

[
iK̇k

∗
Ks − i

( ∗
Ks

)
K̇k + i

2

( ∗
K
)
K̇ks − i

2
K̇ks

∗
K

]
,

m. 4j ′sMij = δ
ij

kn

{
1

2
K̇knKs + 1

2
K̇sKkn − K̇kKns − K̇nsKk

+ gns
[
iK̇kK − iK̇Kk − ( ∗

Kk
)˙∗K − ( ∗

K
)˙∗
Kk + K̇mkKm + K̇mKmk

]

+ 1

2
εksmp

[
i
( ∗
Kn

)
K̇mp − iK̇mp

∗
Kn

]
}

+ εijkn
{
δsk
[( ∗
Kn

)
K̇

+ K̇
∗
Kn + iK̇n

∗
K − i

( ∗
K
)
K̇n

]+ i
( ∗
Kn

)
K̇k

s − iK̇k
s

∗
Kn

}
,

n. 4j ′iSj = K̇i
∗
Kj + ( ∗

K
j )
K̇i + ( ∗

Ki
)
K̇j + K̇j

∗
Ki − ( ∗

K
)
K̇ij − K̇ij

∗
K

+ gij

[
iK̇

∗
K − i

( ∗
K
)
K̇ − ( ∗

Ks

)
K̇s − K̇s

∗
Ks + i

4
εksmnK̇ksKmn

]

+ εijks
[

1

2
K̇Kks + 1

2
K̇ksK + iK̇kKs + i

( ∗
Kk

)˙∗
Ks

]

− i

2

(
εimpqK̇j

m + εjmpqK̇i
m

)
Kpq,

o. 4j ′iN = −i
( ∗
Ki
)
K̇ + iK̇

∗
Ki + ( ∗

K
)
K̇i + K̇i

∗
K

− K̇ij
∗
Kj − ( ∗

Kj

)
K̇ij − i

2
εijks

(
K̇sKjk − K̇jkKs

)
. (3.77)



3.3 Tensor Representation of Semispinors Space E1
4 147

All Eqs. (3.73)–(3.77) are obtained by contraction of identities (C.1) with
components of spinors χ+DχEψB , χDχEψB, . . . .

3.3 Tensor Representation of Semispinors
in Pseudo-Euclidean Space E1

4

3.3.1 Semispinors in Pseudo-Euclidean Space E1
4

If the four components of the first-rank spinor ψA in the pseudo-Euclidean space
E1

4 are connected by the relation

ψ = ±iγ 5ψ, (3.78)

in which one can take signs + or −, then components ψA are defined only by two
independent complex parameters. Spinor ψ in this case is called the semispinor in
the space E1

4 .
Multiplying the Hermitian conjugate equation (3.78) by the matrix of the

components of invariant second-rank spinor β, for the components of the conjugate
semispinor we find

ψ+ = ∓iψ+γ 5. (3.79)

Since Eq. (3.78) is invariant under transformations of the restricted Lorentz
group, the set of all spinors with components ψA, satisfying Eq. (3.78), forms in
the spinor space a subspace that is invariant with respect to the restricted Lorentz
group.

To an arbitrary spinor with components ψ in the four-dimensional pseudo-
Euclidean space E1

4 it is possible to put in correspondence two semispinors with
the contravariant components ψ(I) and ψ(II) determined in the same basis, as ψ:

ψ(I) = 1

2

(
I + iγ 5)ψ, ψ(II) = 1

2

(
I − iγ 5)ψ. (3.80)

From definitions (3.80) and equality γ 5γ 5 = −I (see formulas (3.11)) it follows
that the components of semispinors ψ(I) and ψ(II) satisfy the equations

ψ(I) = iγ 5ψ(I), ψ(II ) = −iγ 5ψ(II).

It follows from definitions (3.80) that the relative sign of the semispinors
components ψ(I) and ψ(II) is fixed. It means that the product ψ(I)ψ(II ) has the
certain sign, though the components ψ(I) and ψ(II) are two-valued.
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Let us introduce a spinbasis
∗
εA, in which the components of the invariant

spintensors γi are determined by the matrices

γ1 =

∥
∥∥
∥
∥
∥
∥∥

0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

∥
∥∥
∥
∥
∥
∥∥

, γ2 =

∥
∥∥
∥
∥
∥
∥∥

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

∥
∥∥
∥
∥
∥
∥∥

,

γ3 =

∥
∥
∥
∥∥
∥
∥
∥

0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

∥
∥
∥
∥∥
∥
∥
∥

, γ4 =

∥
∥
∥
∥∥
∥
∥
∥

0 0 i 0
0 0 0 i
i 0 0 0
0 i 0 0

∥
∥
∥
∥∥
∥
∥
∥

, (3.81)

while the components of the metric spinor E and the invariant spinors γ 5, β, and �

are determined by the matrices

E =

∥
∥∥
∥
∥
∥
∥
∥

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

∥
∥∥
∥
∥
∥
∥
∥

, γ 5 =

∥
∥∥
∥
∥
∥
∥
∥

−i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 i

∥
∥∥
∥
∥
∥
∥
∥

,

β =

∥
∥
∥
∥∥
∥
∥
∥

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

∥
∥
∥
∥∥
∥
∥
∥

, � =

∥
∥
∥
∥∥
∥
∥
∥

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

∥
∥
∥
∥∥
∥
∥
∥

. (3.82)

According to definitions (3.47) and (3.82), for the covariant components of the

conjugate spinor in the spinbasis
∗
εA we have

ψ+ = ψ̇T β = ‖ψ+
A ‖ = (

ψ̇3, ψ̇4, ψ̇1, ψ̇2), (3.83)

while the covariant components of the spinor ψA are defined as follows

ψ̃ = (Eψ)T = ‖ψA‖ = (
ψ2,−ψ1,−ψ4, ψ3). (3.84)

It follows from Eqs. (3.43) that the spinor transformations {±S}, corresponding
to the restricted Lorentz transformations of the bases of the space E1

4 , are defined in

the chosen special spinbasis
∗
εA by the matrices

S = ±
∥
∥
∥
∥
A 0
0 (Ȧ−1)T

∥
∥
∥
∥ , (3.85)
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where A is some two-dimensional matrix, 0 is the two-dimensional null matrix

A =
∥∥
∥
∥
α β

γ δ

∥∥
∥
∥ , 0 =

∥∥
∥
∥

0 0
0 0

∥∥
∥
∥ .

It follows from Eqs. (3.43) that the matrix A is unimodular

detA = αδ − βγ = 1. (3.86)

It is obvious that the sets of matrices {±A} and {±(Ȧ−1)T }, corresponding to
the restricted Lorentz transformation, form groups, which realize two-dimensional
representations of the restricted Lorentz group. Thus, the spinor representation of
the restricted Lorentz group is reducible.

It is easy to see that in the spinbasis
∗
εA under consideration, from condition

ψ = iγ 5ψ it follows ψ3 = ψ4 = 0, while from condition ψ = −iγ 5ψ it follows
ψ1 = ψ2 = 0. Therefore for the contravariant components of semispinors ψI and

ψII in the spinbasis
∗
εA we can write

ψ(I) =

∥
∥∥
∥
∥
∥
∥∥

ψ1

ψ2

0
0

∥
∥∥
∥
∥
∥
∥∥

, ψ(II ) =

∥
∥∥
∥
∥
∥
∥∥

0
0
ψ3

ψ4

∥
∥∥
∥
∥
∥
∥∥

. (3.87)

According to definitions (3.84) and (3.87), for the covariant components of

semispinors ψ̃I and ψ̃II in the spinbasis
∗
εA we have

ψ̃(I ) = (
ψ2,−ψ1, 0, 0

)
, ψ̃(II ) = (

0, 0,−ψ4, ψ3).

From definitions (3.83) and (3.87) we find expressions for the covariant components

of the conjugate semispinors ψ+
I and ψ+

II in the spinbasis
∗
εA:

ψ+
(I )

= (
0, 0, ψ̇1, ψ̇2), ψ+

(I I )
= (

ψ̇3, ψ̇4, 0, 0
)
.

From formula (3.85) it follows that under the restricted Lorentz transformations
the components of an arbitrary spinor ψ1, ψ2 and the components ψ3, ψ4,

calculated in the spinbasis
∗
εA, are transformed separately. Therefore, restricting

ourselves to considering only restricted orthogonal transformations of the bases Эi

in E+
2ν , we can define the covariant and contravariant components of the semispinors

ψ(I) and ψ(II) in spinbasis
∗
εA by only two nonzero components. In this connection

in a calculations with semispinors it is possible (and sometimes simpler) to use two-
dimensional matrix notations.

Next, let us denote two nonzero contravariant and covariant components of a
semispinor ψI , respectively, by symbols ξA and ξA(A = 1, 2), while the column of



150 3 Spinors in the Four-Dimensional Space

contravariant components ξA and the row of covariant components ξA by symbols ξ
and ξ̃ . The nonzero contravariant and covariant components of the semispinor ψII

we denote by symbols ηȦ and ηȦ (Ȧ = 1, 2), while the row of the contravariant

components ηȦ and the column of the covariant components ηȦ by symbols η̃ and
η. Thus,

ξ =
∥
∥
∥
∥
ξ1

ξ2

∥
∥
∥
∥ =

∥
∥
∥
∥
ψ1

ψ2

∥
∥
∥
∥ , ξ̃ = ‖ξ1, ξ2‖ = ‖ψ2,−ψ1‖,

η =
∥
∥
∥
∥
η1̇
η2̇

∥
∥
∥
∥ =

∥
∥
∥
∥
ψ3

ψ4

∥
∥
∥
∥ , η̃ = ‖η1̇, η2̇‖ = ‖ − ψ4, ψ3‖. (3.88)

By means of the introduced notations the contravariant and covariant components

of an arbitrary four-component spinor ψ in the spinbasis
∗
εA can be written in the

form

ψ = ‖ψA‖ =

∥
∥
∥
∥
∥∥
∥
∥

ψ1

ψ2

ψ3

ψ4

∥
∥
∥
∥
∥∥
∥
∥

=

∥
∥
∥
∥
∥∥
∥
∥

ξ1

ξ2

η1̇
η2̇

∥
∥
∥
∥
∥∥
∥
∥

,

ψ̃ = ‖ψA‖ = ‖ψ2,−ψ1,−ψ4, ψ3‖ = ‖ξ1, ξ2, η
1̇, η2̇‖. (3.89)

In the same spinbasis for the covariant and contravariant components of the
conjugate spinor, according to definitions (3.48), (3.82) and (3.83), we have

ψ̄ = ‖ψ+A‖ =

∥
∥∥
∥
∥
∥
∥
∥

−ψ̇4

ψ̇3

ψ̇2

−ψ̇1

∥
∥∥
∥
∥
∥
∥
∥

=

∥
∥∥
∥
∥
∥
∥
∥

−η̇2̇
η̇1̇
ξ̇2

−ξ̇1

∥
∥∥
∥
∥
∥
∥
∥

=

∥
∥
∥∥
∥
∥
∥
∥∥

η̇1̇

η̇2̇

ξ̇1

ξ̇2

∥
∥
∥∥
∥
∥
∥
∥∥

,

ψ+ = ‖ψ+
A ‖ = ‖ψ̇3, ψ̇4, ψ̇1, ψ̇2‖ = ‖η̇1̇, η̇2̇, ξ̇

1, ξ̇2‖.

3.3.2 Two-Component Spinors in the Four-Dimensional
Pseudo-Euclidean Space E1

4

For the restricted Lorentz transformation of bases Эi of the space E1
4 two-

component quantities ξ , η in accordance with equalities (3.85) are transformed as
follows:

ξ ′ = Aξ, η′ = (
ȦT

)−1
η. (3.90)
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Since groups of the matrices {±A}, {±(Ȧ−1)T } realize representations of the
restricted Lorentz group, components ξ and η define in the space E1

4 geometric
objects, which will be further called two-component spinors.6

From definitions (3.88) it is seen that the contravariant components ξA, ηȦ and
the covariant components ξA, ηȦ are connected by the relations7

ξ1 = ξ2, ξ2 = −ξ1,

η1̇ = η2̇, η2̇ = −η1̇,

which can be written in the form

ξA = εABξ
B, ξA = εABξB,

ηȦ = εȦḂη
Ḃ , ηȦ = εȦḂηḂ ,

where the components of the metric spinor εAB , εȦḂ , εAB , and εȦḂ are defined by
the matrices

ε = ‖εAB‖ = ‖εȦḂ‖ =
∥
∥∥
∥

0 1
−1 0

∥
∥∥
∥ ,

ε−1 = ‖εAB‖ = ‖εȦḂ‖ =
∥
∥
∥
∥

0 −1
1 0

∥
∥
∥
∥ = −ε. (3.91)

We note the useful relation

εABεCD + εADεBC + εACεDB = 0, (3.92)

which is fulfilled by virtue of the fact that in a two-dimensional space the completely
antisymmetric components with the number of indices greater than two are equal to
zero. Lifting the indices C, D in equality (3.92), we get also

εABε
CD = δDA δCB − δCAδDB .

Let us contract this equality with components ξCηD , where ξC and ηD determine
two-component spinors in E1

4:

εABξCηC = ξBηA − ξAηB.

6Sometimes (especially in physical literature) a four-component spinor in the space E1
4 is called a

bispinor, while ξ , η are called, respectively, undotted and dotted spinors in the space E1
4 .

7For two-component spinors one uses also the following connection between contravariant and
covariant components of a spinor ξ2 = ξ1, ξ1 = −ξ2 that is related to different definition of
covariant and contravariant components εAB , εAB of the metric spinor. With such definition of the
connection between ξA and ξA in some formulas the sign changes.
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From this equality under condition ξCηC = 1 we find the following representa-
tion for the components of the metric spinor εAB :

εAB = ξBηA − ξAηB, ξCηC = 1.

Further on we introduce four two-dimensional matrices

σ1 =
∥
∥
∥∥

0 1
1 0

∥
∥
∥∥ , σ2 =

∥
∥
∥∥

0 −i
i 0

∥
∥
∥∥ , σ3 =

∥
∥
∥∥

1 0
0 −1

∥
∥
∥∥ , σ4 = I =

∥
∥
∥∥

1 0
0 1

∥
∥
∥∥ . (3.93)

Using two-dimensional matrices σi and ε, the four-dimensional matrices E, β,

�, γi , γij ,
∗
γ i , and γ 5, determined by equalities (3.8), (3.9), (3.81), and (3.82), can

be written in the form:

β =
∥
∥
∥
∥

0 I

I 0

∥
∥
∥
∥ , E =

∥
∥
∥
∥
ε 0
0 −ε

∥
∥
∥
∥ =

∥
∥
∥
∥

iσ2 0
0 −iσ2

∥
∥
∥
∥ , � =

∥
∥
∥
∥

0 −iσ2

iσ2 0

∥
∥
∥
∥ ,

γα =
∥
∥
∥
∥

0 iσα

−iσα 0

∥
∥
∥
∥ , γ4 =

∥
∥
∥
∥

0 iI
iI 0

∥
∥
∥
∥ , γ 5 =

∥
∥
∥
∥
−iI 0

0 iI

∥
∥
∥
∥ ,

∗
γ α =

∥
∥∥
∥

0 −σα

−σα 0

∥
∥∥
∥ ,

∗
γ 4 =

∥
∥∥
∥

0 −I

I 0

∥
∥∥
∥ ,

γαβ =
∥
∥
∥
∥
σ[ασβ] 0

0 σ[ασβ]

∥
∥
∥
∥ , γ4α =

∥
∥
∥
∥
σα 0
0 −σα

∥
∥
∥
∥ . (3.94)

By means of the matrices σi and ε, Eqs. (3.43), determining spinor transforma-
tions, one can write in the form of the two-dimensional matrix equations:

AT εA = ε, lj iσj = A−1σi

(
ȦT

)−1
. (3.95)

From Eqs. (3.90) and (3.95) it follows that the contravariant dotted components ηȦ

are transformed as the complex conjugate undotted contravariant components ξ̇A:

η̃ ′ = η̃ȦT .

From (3.95) it follows that the matrices σj and ε form the invariant spintensor
components with the following structure of the indices:

σj = ‖σBȦ
j ‖, ε = ‖εBA‖. (3.96)

For the covariant components of the spintensor σḂAj = εḂĊεADσDĊ
j by virtue

of equalities (3.91), (3.93), and (3.96) we have

‖σḂA4‖ = I, ‖σḂAα‖ = −σα, α = 1, 2, 3. (3.97)
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Therefore, taking into account the metric signature of the pseudo-Euclidean space
E1

4, we find

σ
j

ḂA
= −σBȦ

j .

It is obvious that the matrices σi are Hermitian σ̇ T
i = σi , or

σ̇
j

ḂA
= σ

j

ȦB
, σ̇ BȦ

j = σAḂ
j .

Using definitions (3.93), (3.96), and (3.97) it is not difficult to verify that the
components σ

j

ḂA
and σBȦ

j satisfy the equations

σBĊ
i σĊAj + σBĊ

j σĊAi = −2gij δ
B
A,

σȦCiσ
CḂ
j + σȦCj σ

CḂ
i = −2gij δ

Ḃ
Ȧ
. (3.98)

Let us now consider the spintensors with components σB
Aij and σ Ḃ

Ȧij :

σB
Aij = − i

2

(
σBĊ
i σĊAj − σBĊ

j σĊAi

)
,

σ Ḃ
Ȧij = − i

2

(
σȦCiσ

CḂ
j − σȦCjσ

CḂ
i

)
. (3.99)

Due to definitions (3.93), (3.96), and (3.97) we have

‖σB
Aαβ‖ =iσ[ασβ] = −εαβλσ

λ,

‖σB
A4α‖ = − ‖σB

Aα4‖ = iσα,

‖σ Ḃ
Ȧαβ‖ = − iσ̇[ασ̇β] = −εαβλσ̇

λ,

‖σ Ḃ
Ȧ4α‖ = − ‖σ Ḃ

Ȧα4‖ = −iσ̇α, (3.100)

where σα = σα ; εαβλ are the components of the three-dimensional Levi-Civita
pseudotensor; the Greek indices α, β, and λ have the values 1, 2, 3. From
definitions (3.91), (3.93), and (3.100) it follows that the matrices σij = ‖σB

Aij‖
and ε are connected by the relation

σT
ij = −εσij ε

−1. (3.101)

From equalities (3.100) it is seen that the components of the spintensors σ Ḃ
Ȧij

are complex conjugate with components σB
Aij :

σ Ḃ
Ȧij = σ̇ B

Aij . (3.102)
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Since the components of the metric spinor ε are real, the same relations are
valid for the covariant components of the spintensors σBAij = εBCσC

Aij and

σḂȦij = εḂĊσ Ċ
Ȧij and for the contravariant components of the spintensors σBA

ij =
εACσB

Cij and σ ḂȦ
ij = εȦĊσ Ḃ

Ċij :

σḂȦij = σ̇BAij , σ ḂȦ
ij = σ̇ BA

ij .

For the covariant components σBAij and the contravariant components σBA
ij we have

‖σBA12‖ = ‖ − σBA
12 ‖ = ‖ − iσBA34‖ = ‖iσBA

34 ‖ = σ1 =
∥
∥∥
∥

0 1
1 0

∥
∥∥
∥ , (3.103)

‖σBA23‖ = ‖ − σBA
23 ‖ = ‖ − iσBA14‖ = ‖iσBA

14 ‖ = −σ3 =
∥∥
∥
∥
−1 0
0 1

∥∥
∥
∥ ,

‖σBA31‖ = ‖σBA
31 ‖ = ‖ − iσBA24‖ = ‖ − iσBA

24 ‖ = −iI =
∥
∥
∥
∥
−i 0
0 −i

∥
∥
∥
∥ .

From equalities (3.103) it is seen that the components of the spintensors σBA
ij and

σBAij are symmetric in the spinor indices

σBA
ij = σAB

ij , σBAij = σABij

and satisfy the invariant linear identities

σBAij = i

2
εijksσ

ks
BA, σḂȦij = − i

2
εijksσ

ks

ḂȦ
. (3.104)

For the product of matrices σi and σij , the following relations are valid,
which can be checked directly taking into account definitions (3.96), (3.100) and
Eqs. (3.98):

σBĊ
i σĊAj = iσB

Aij − gij δ
B
A,

σȦCiσ
CḂ
j = iσ Ḃ

Ȧij − gij δ
Ḃ
Ȧ
, (3.105)

σA
Bij σ

BḊ
s = εijsmσAḊm − igsiσ

AḊ
j + igsj σ

AḊ
i ,

σḊBsσ
B
Aij = −εijsmσm

ḊA
+ igsiσḊAj − igsj σḊAi,

σB
Aij σ

A
Dks = δBD

(
gikgjs − gisgjk + iεijks

)

+ i
(− gikσ

B
Djs + gisσ

B
Djk + gjkσ

B
Dis − gjsσ

B
Dik

)
.
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and

σ i

ĊD
σAḂ
i = −2δḂ

Ċ
δA
D
,

1

4
σ

ij
CDσAB

ij + εABεCD = −2δACδBD. (3.106)

Formulae (3.106) are analogous to the Pauli identity (3.21). Identities (3.106) are
not difficult to obtain if to use the relations, which are checked directly by means of
the definitions of matrices (3.103) and (3.91):

σAḂ
i σ

j

ḂA
= −2δji ,

εABε
AB = −2, εABσ

AB
ij = 0,

σABij σ
AB
ks = −2

(
gikgjs − gisgjk + iεijks

)
. (3.107)

The contraction of the first identity in (3.106) with the spintensors components
σ gives the following identities

2σj

ȦB
εCD =σ

j

ȦD
εCB − iσȦDiσ

ij
CB,

2σj

ȦB
σ si

CD
=σ

j

ȦD
σ si

BC
− σ s

ȦD
σ

ij
BC + σ i

ȦD
σ

sj
BC

+σȦDq

(
σ

qs

BCgij − σ
qi

BCgjs
)+ iσȦDqεBC

(
gqsgij − giqgjs + iεqjsi

)
,

2σ i

ȦB
σ

j

ĊD
=σ i

ȦD
σ

j

ĊB
+ σ

j

ȦD
σ i

ĊB
− gij σȦDnσ

n

ĊB
+ iεijmnσȦDmσĊBn.

In the sequel the following identities will be used also

2eBCσ
mn
DA = −εCDσmn

BA + σmn
CDεBA + i

2

(
σ

mj

CDσBA
n
j − σ

nj

CDσBA
m
j

)
,

2σmn
BCeDA = −εCDσmn

BA + σmn
CDεBA − i

2

(
σ

mj
CDσBA

n
j − σ

nj
CDσBA

m
j

)
, (3.108)

which can be obtained by the contraction of the second relation in (3.106) with the
spintensor components σmn with respect to the spinor indices.

It is obvious that the system of four matrices σi = ‖σBȦ
i ‖ and the system of

four different matrices ε−1 = ‖εAB‖, σij = ‖σAB
ij ‖(for example, matrices ε−1, σ12,

σ23, σ31) are linearly independent and form bases in the space of the second-order
complex matrices.
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3.3.3 Representation of Semispinors in the Space E1
4

by Complex and Real Tensors

Using definitions (3.51), (3.58), and (3.59) of the tensors C, D and definition (3.80)
of semispinors ψ(I), ψ(II), the components of the tensors C, D can be expressed in
terms of the components of the semispinors ψ(I), ψ(II). For the components of the
complex tensors C we have

Ci = ψT
(I)Eγ iψ(II ) + ψT

(II )Eγ iψ(I),

Cij = ψT
(I)Eγ ijψ(I) + ψT

(II )Eγ ijψ(II ). (3.109)

The components of the real tensors D are expressed in terms of the components
of the semispinors by the equalities of the form

Ω = ψ+
(I )ψ(II ) + ψ+

(I I )ψ(I),

j s = i
(
ψ+

(I )γ
sψ(I) + ψ+

(I I )γ
sψ(II )

)
,

Msj = i
(
ψ+

(I )γ
sjψ(II ) + ψ+

(I I )γ
sjψ(I)

)
,

Si = ψ+
(I )

∗
γ iψ(I) + ψ+

(I I )

∗
γ iψ(II ),

N = ψ+
(I )γ

5ψ(II) + ψ+
(I I )γ

5ψ(I). (3.110)

Replacing in definitions (3.109) the matrices E, γ i , γ ij by formulas (3.94),
and the components of the semispinors ψ(I), ψ(II) by formulas (3.87) and (3.88),
definitions (3.109) for the components of tensors C can be written by means of the
two-dimensional matrix notations

Cα = i
(− ξ̃σ αη + η̃σ αξ

)
, C4 = i

(
ξ̃η + η̃ξ

)
,

C4α = ξ̃σ αξ − η̃σ αη, Cαβ = −iεαβλ
(
ξ̃σλξ + η̃σλη

)
,

or in the invariant contractions

Cj = −2iσj

ḂA
ηḂξA,

Cjs = −iσjs

BAξ
BξA − iσjs

ḂȦ
ηḂηȦ. (3.111)

For the components of the real tensors D in the same way we get

Ω = η̇T ξ + ξ̇ T η, N = i
(− η̇T ξ + ξ̇ T η

)
,

jα = −η̇T σαη + ξ̇ T σαξ, j4 = η̇T η + ξ̇ T ξ,
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Mαβ = −εαβλ
(
η̇T σλξ + ξ̇ T σλη

)
, M4α = i

(− η̇T σαξ + ξ̇ T σαη
)
,

Sα = −η̇T σαη − ξ̇ T σαξ, S4 = η̇T η − ξ̇ T ξ,

or, in an explicitly invariant form

Ω = εBAξ
Bη̇Ȧ + εḂȦξ̇

BηȦ, N = i
(− εBAξ

Bη̇Ȧ + εḂȦξ̇
BηȦ

)
,

j i = σ i

ḂA

(− ξ̇BξA − ηḂ η̇Ȧ
)
, Si = σ i

ḂA

(
ξ̇BξA − ηḂ η̇Ȧ

)
,

Mjs = −σ
js

BAξ
Bη̇Ȧ − σ

js

ḂȦ
ξ̇BηȦ. (3.112)

If the components of a spinor ψ satisfy Eq. (3.78), then the components of
the vector Ci determined by spinor ψ , are identically equal to zero, while the
components of the antisymmetric tensor Cij satisfy the additional linear equation

Ci = 0, Cij = ± i

2
εijksCks. (3.113)

Equations (3.113) follow directly from definitions (3.111) and identities (3.104),
since if the equation ψ = ±iγ 5ψ is satisfied, then ξ = 0 or η = 0.

Let us give a proof of Eqs. (3.113), which is not connected with the choice of the

special basis
∗
εA. Replacing the components of the spinor ψ in definitions (3.50) of

the components Ci , Cij by formula (3.78), we find

Ci = γ i
ABψ

AψB = ±iγ i
ABγ

5B
CψAψC = ±i

∗
γ i

ACψAψC = 0,

Cij = γ
ij

ABψ
AψB = ±iγ ij

ABγ
5B

CψAψC (3.114)

= ± i

2
εijksγACksψ

AψC = ± i

2
εijksCks .

Under the transformation of Eqs. (3.114) it is necessary to use relations (3.11).
If the components of complex tensors Ci , Cij satisfy Eqs. (3.113), then all

algebraic bilinear equations (3.52) and (3.53) by virtue of Eqs. (3.113) are satisfied
identically except the equation

CijC
ij = 0. (3.115)

Thus, the semispinor ψ = ±iγ 5ψ in the pseudo-Euclidean space E1
4 is

equivalent to the complex antisymmetric tensor of the second rank with components
Cij that satisfy Eqs. (3.113), (3.115) [74, 75].
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The one-to-one connection between the components of the semispinor ψ and the
tensor Cij is realize by relations

Cij = γ
ij
BAψ

BψA,

ψA = ψBA

±√ψBB
, ψBA = 1

8
Cij γ BA

ij .

Due to the second equation in (3.113), the components of the tensor Cij one can
determine by the matrix (the choice of sign in this formula corresponds to the choice
of sign in (3.113))

Cij =

∥
∥∥
∥
∥
∥
∥
∥

0 p3 −p2 ±ip1

−p3 0 p1 ±ip2

p2 −p1 0 ±ip3

∓ip1 ∓ip2 ∓ip3 0

∥
∥∥
∥
∥
∥
∥
∥

, (3.116)

where components pα determine a three-dimensional complex null vector

(
p1)2 + (

p2)2 + (
p3)2 = 0. (3.117)

Hence we can say also that a semispinor (or two-component spinor) in the
pseudo-Euclidean space E1

4 is equivalent to the three-dimensional complex null
vector with components pα . The transformation of the components pα under
pseudo-orthogonal transformation of the basis Эi in the space E1

4 is considered
in Sect. 3.5 of this chapter.

For the real tensors D determined by semispinors, it is easy to show the validity
of the formulas

Ω = N = Mij = 0, j i = ∓Si. (3.118)

For example, for the invariant Ω we have

Ω = −eAB

(± iγ 5B
Cψ

C
)(∓ iγ 5A

Dψ+D
) = eABψ

+AψB = −Ω.

From this it follows Ω = 0.
Thus, the tensors C, D corresponding to a semispinor ψ take the following

special form

C = {0, Cij }, D = {0, j i, 0,∓j i, 0}.
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The bilinear equations (3.60), (3.62), (3.63) for tensors C, D determined by
semispinors are written as follows:

jij
i = 0, jiC

ij = 0, 2j ij s = Ci
mĊsm,

ĊijCks = gsj j ij k − gsij j j k + gikj j j s − gkj j sj i

∓ i

2
jm
(
j iεjksm − jj εiksm + j sεkijm − jkεsijm

)
.

In conclusion, we emphasize once again that one four-component spinor ψ

determines two two-component spinors ξ and η (or two semispinors ψ(I ) and ψ(I I ))
with a fixed relative sign. However, one cannot assert (as is sometimes done) that
two arbitrary two-component spinors ξ , η determine one four-component spinor
with components (3.89). Indeed, since the components of the spinors ξ and η are
two-valued, they determine, in any case, two different four-component spinors ψ

and iγ 5ψ:

ψ =
∥
∥
∥∥
ξ

η

∥
∥
∥∥ , iγ 5ψ =

∥
∥
∥∥

ξ

−η

∥
∥
∥∥ .

From the point of view of the tensor representation of spinors, the components of
arbitrary spinors ξ and η determine completely the tensor with components Cij by
formula (3.111), but components (3.111) of the vectors Ci are defined by them only
up to the sign since the relative sign of the components of arbitrary spinors ξ , η is
not defined. As it was already noted (see Sect. 3.2 of this chapter), if the components
of tensors {Ci,Cij } determine the spinor with components ψ , then the components
of tensors {−Ci,Cij } determine the spinor with components iγ 5ψ .

Thus, the use of the four-component spinor and two arbitrary two-component
spinors is not equivalent. This, in essence is a manifestation of the fact that the
space of spinors in Euclidean spaces, with components defined up to the common
sign, is not linear; in the space of spinors the addition operation is not defined.

3.3.4 Representation of Two Semispinors by Systems
of Tensors in the Space E1

4

If a spinor χ is arbitrary, while a spinor ψ satisfies Eq. (3.78), then tensors K ,
defined by Eqs. (3.71) and (3.72), satisfy the additional linear equations

∗
K = ∓iK,

∗
Ki = ∓Ki, Kij = ± i

2
εijksK

ks,

which are obtained in the same way, as well as Eq. (3.113). Thus, we have K =
{K,Ki,Kij ,∓Ki,∓iK}.
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Equations (3.75) in this case pass into the following ones

KiK
i = 0, KijK

ij = 4K2,

KKi = iKjK
ij , KisKj

s = gijK2.

Equations (3.77) expressing the components of real tensors D and D′ in terms of
the components of tensors K , in the case under consideration can be written in the
form

2Ω ′j i = −KK̇i − K̇Ki − iK̇siKs + iK̇sK
si,

∓2N ′j i = −iKK̇i + iK̇Ki + K̇isKs + K̇sK
is ,

2j ′sj i = iK̇Ksi − iK̇siK + K̇sKi + K̇iKs

+ K̇sjKi
j − gsi

(
K̇K + K̇jK

j
)± iεiskj K̇kKj .

If a spinor ψ is arbitrary, while χ is semispinor (χ = ±iγ 5χ), then for the
tensors K we have

∗
K = ∓iK,

∗
Ki = ±Ki, Kij = ± i

2
εijksK

ks.

Thus, in this case K = {K,Ki,Kij ,±Ki,∓iK}.
If the tensors K are defined by the semispinors ψ = ±iγ 5ψ and χ = ±iγ 5χ ,

then for tensors K it is possible to write

Ki = 0,
∗
Ki = 0,

∗
K = ∓iK, Kij = ± i

2
εijksKks,

so K = {K, 0,Kij , 0,∓iK}.
Equations (3.75)–(3.77) for this case can be written as:

KijK
ij = 4K2, KisKj

s = gijK2,

2j ′sj i = iK̇Ksi − iK̇siK + K̇sjKi
j − gsiK̇K,

KisCj
s + KjsCi

s = 0.

If the tensors K are defined by semispinors ψ = ±iγ 5ψ and χ = ∓iγ 5χ , we
have

K = 0,
∗
K = 0, Kij = 0,

∗
Ki = ∓Ki. (3.119)

Hence, in this case K = {0,Ki, 0,∓Ki, 0}.
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Equations (3.75)–(3.77) in the presence of relations (3.119) pass into the
equations

KiK
i = 0, KiC

ij = 0, εijksK
jCks = 0,

2j ′sj i = K̇sKi + K̇iKs − gsiK̇jK
j ± iεiskj K̇kKj .

3.3.5 Tensor Representation of Two-Component Spinors
in the Pseudo-Euclidean Space E1

4

Due to completeness of the system of the matrices ε−1 = ‖εAB‖ and σ ij = ‖σAB
ij ‖,

the components of an arbitrary second-rank spinor ξAB (A, B = 1, 2) can be
represented in the form

ξAB = 1

2

(
FεAB + 1

4
FjsσAB

js

)
.

Using identities (3.107) we find that the complex scalar F and complex components
of the antisymmetric second-rank tensor Fjs are expressed in terms of ξAB by the
relations

F = −εABξ
AB, F js = −σ

js
ABξAB.

The contraction of the first identity (3.104) with the spinor components χAB

gives the linear equation

Fjs = i

2
εjsmnFmn. (3.120)

Taking into account expressions (3.91) and (3.103) for ε and σjs , we find

F = −ξ12 + ξ21, F 12 = iF 34 = −ξ12 − ξ21,

F 23 = iF 14 = ξ11 − ξ22, F 31 = iF 24 = i
(
ξ11 + ξ22).

The inverse relations have the form

ξ11 = 1

2

(
F 23 − iF 31), ξ12 = 1

2

(− F − F 12),

ξ21 = 1

2

(
F − F 12), ξ22 = 1

2

(− F 23 − iF 31).
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Due to antisymmetry of the metric spinor components εAB = −εBA and
symmetry of the spintensor components σBA

ij = σAB
ij , the equalities for the

antisymmetric and symmetric parts of the components ξAB are valid

ξAB − ξBA = FεAB, ξAB + ξBA = 1

4
FjsσAB

js .

From this it is seen that any antisymmetric spinor of the second rank with
components ξ [AB] is equivalent to a complex scalar F ; any spinor of the second
rank with symmetric components ξ(AB) is equivalent to a complex antisymmetric
tensor of the second rank with components satisfying relation (3.120).

If the components of spinor ξAB are represented in the form of product of the
undotted components of the first-rank spinor ξAB = ξAξB , then an expansion in the
invariant spintensors can be written in the form

ξAB = ξAξB = − i

8
CjsσAB

js ,

where the components of the antisymmetric tensor

Cjs = −iσjs
ABξAξB (3.121)

satisfy the equations

CjsC
js = 0, Cjs = i

2
εjsmnCmn. (3.122)

The first equation in (3.122) can be obtained by contraction of the second identity
in (3.106) with spinor components ξAξBξCξD with respect to the indices A, B, C,
D.

Similar relations can be written for the spinor components of the second rank
with dotted indices

ηȦḂ = 1

2

(
�εȦḂ + 1

4
�jsσ ȦḂ

js

)
,

where

� = −εȦḂη
ȦḂ , �js = −σ

js

ȦḂ
ηȦḂ .

Contracting the second identity (3.104) with components ηȦḂ , we obtain that the
components of the antisymmetric tensor �js satisfy the linear equation

�js = − i

2
εjsmn�mn.
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Using definitions (3.91) and (3.103) for ε, σjs , we obtain

� = −η1̇2̇ + η2̇1̇, �12 = −i�34 = −η1̇2̇ − η2̇1̇,

�23 = −i�14 = η1̇1̇ − η2̇2̇, �31 = −i�24 = −i
(
η1̇1̇ + η2̇2̇),

η1̇1̇ = 1

2

(
�23 + i�31),

η2̇1̇ = 1

2

(
� − �12),

η1̇2̇ = 1

2

(− � − �12),

η2̇2̇ = 1

2

(− �23 + i�31).

For the product of the dotted components of the first-rank spinor we have

ηȦηḂ = − i

8
Cjsσ ȦḂ

js , Cjs = −iσjs

ȦḂ
ηȦηḂ .

The components of the antisymmetric tensor Cjs in this equality satisfy the
equations

CjsC
js = 0, Cjs = − i

2
εjsmnCmn.

Let us now consider the components of the second rank spinor with one dotted
index ξ ḂA. Due to completeness of the system of four matrices σi = ‖σBȦ

i ‖, for the

arbitrary components ξ ḂA (A, Ḃ = 1, 2) one can write

ξ ḂA = 1

2
j iσAḂ

i ,

where the components of the vector j i are expressed in terms of ξ ḂA by the equality

j i = −σ i

ḂA
ξ ḂA.

Using definitions (3.96) and (3.93) of the matrices σ ḂA
i , we find

ξ 1̇1 = 1

2

(
j4 + j3), ξ 1̇2 = 1

2

(
j1 + ij2),

ξ 2̇1 = 1

2

(
j1 − ij2), ξ 2̇2 = 1

2

(
j4 − j3).

The inverse relations have the form

j1 = ξ 1̇2 + ξ 2̇1, j2 = i
(− ξ 1̇2 + ξ 2̇1),

j3 = ξ 1̇1 − ξ 2̇2, j4 = ξ 1̇1 + ξ 2̇2.
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If the matrix of components ξ ḂA is Hermitian ‖ξ ḂA‖˙ = ‖ξ ḂA‖T , then due to
hermiticity of matrices σi the vector components j i are real

(
j i
)˙= j i .

If the components of a spinor ξ ḂA are represented in the form of product ξ ḂA =
ηḂξA, then the vector j = j iЭi is null

jij
i = 0. (3.123)

Equation (3.123) can be obtained by contracting the first identity in (3.106) with
components of spinor ηĊξDηḂξA with respect to the indices A, Ḃ, Ċ, D.

It is obvious that the tensor components of any rank j i1i2...in can be represented
in the form

j i1i2...in = (−1)nσ i1

Ḃ1A1
σ

i2

Ḃ2A2
· · · σ in

ḂnAn
ξ Ḃ1A1Ḃ2A2...ḂnAn

with the corresponding choice of the spinor components ξ Ḃ1A1Ḃ2A2...ḂnAn . To each
tensor index is there corresponds the pair of the spinor indices Ḃs , As .

The inverse relation has the form

ξ Ḃ1A1Ḃ2A2...ḂnAn = 1

2n
σ

A1Ḃ1
i1

σ
A2Ḃ2
i2

· · · σAnḂn

in
j i1i2···in .

In particular, for the components F ij of an arbitrary real antisymmetric tensor of
the second rank, the relation is valid

F ij = 1

2
σ i

ḂA
σ

j

ḊC

(
εACξḂḊ + εḂḊξAC

)
, (3.124)

where the components of the spinor ξȦḂ are symmetric in the indices Ȧ, Ḃ and
complex conjugate with components ξAB .

Let Rijks be components of a fourth rank tensor satisfying the identities

Rijkm = Rkmij , R[ijk]m = 0,

Rijkm = −Rijmk, Rijkm = −Rjikm.

Then for the components Rijks the following representation is valid

Rijks = 1

4
σAȦ
i σBḂ

j σCĊ
k σDḊ

s

[
ΨABCDεȦḂεĊḊ + ΨȦḂĊḊεABεCD

+ �ABĊḊεȦḂεCD + �CDȦḂεABεĊḊ

+ 2Λ
(
εABεCDεȦḊεḂĊ + εACεBDεȦḂεĊḊ

)]
. (3.125)
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Here Λ is a real scalar; the components of the spinor ΨABCD are symmetric
in all indices; the components ΨȦḂĊḊ are complex conjugate with ΨABCD; the
components �ABĊḊ are symmetric with respect to each pair of the indices A, B
and Ċ, Ḋ and satisfy the condition �̇ABĊḊ = �CDȦḂ .

Formulas (3.124) and (3.125) are used8 in the Newman–Penrose formalism [46,
50]

3.4 Definition of Orthonormal Tetrads in Four-Dimensional
Pseudo-Euclidean Space E1

4 by First-Rank Spinors

3.4.1 The Proper Tetrads Defined by the First-Rank
Four-Component Spinors in the Space E1

4

Let ψ be a four-component spinor of the first-rank in the pseudo-Euclidean
space E1

4, referred to an orthonormal basis Эi . Let us consider four vectors with
components pi , qi , Si , and j i determined by the spinor ψ

pi = ImCi = − i

2
γ i
AB

(
ψAψB + ψ+Aψ+B

)
,

qi = Re Ci = 1

2
γ i
AB

(
ψAψB − ψ+Aψ+B

)
,

Si = − ∗
γ i
ABψ+AψB, j i = −iγ i

ABψ
+AψB, (3.126)

where ψA and ψ+A are the contravariant components of the spinor ψ and conjugate
spinor ψ+ calculated in the basis Эi .

From the first equation in (3.53), equations (a), (b), (c) in (3.60), and equations
(a), (b) in (3.62) it follows that the vector components pi , qi , Si , j i satisfy the
equations

pip
i = qiq

i = SiS
i = −jij

i = Ω2 + N2,

piq
i = piS

i = pij
i = qiS

i = qij
i = Sij

i = 0 (3.127)

and, consequently, vectors with components j i , qi , Si , j i are mutually orthogonal
and have the same modulus ρ = +√

Ω2 + N2. Therefore, if ρ �= 0, then in the
space E1

4 it is possible to introduce the orthonormal basis (tetrad) ĕa , a = 1, 2, 3, 4:

ĕ1 = πiЭi , ĕ2 = ξ iЭi , ĕ3 = σ iЭi , ĕ4 = uiЭi , (3.128)

8We use here the Pauli matrices (3.93), which differ by the factor 1/
√

2 from the matrices used
in [50]. Therefore formulas (3.124) and (3.125) differ from the corresponding Newman–Penrose
formulas by the numerical factor.
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where the components πi , ξ i , σ i , ui of the basis vectors ĕa are defined by the
equalities

πi = 1

ρ
pi, ξ i = 1

ρ
qi, σ i = 1

ρ
Si, ui = 1

ρ
j i. (3.129)

The orthonormal vector basis ĕa determined by the first-rank spinor ψ by
formulas (3.128), (3.129), and (3.126) we shall call the proper basis (or the proper
tetrad) of the spinor ψ .

The components of vectors, tensors and spinors calculated in the proper basis ĕa ,
we shall denote by the symbol ˘ . For example, M = MijЭiЭj = Mabeaeb =
M̆abĕa ĕb. The covariant and contravariant components of the metric tensor of the
space E1

4 calculated in any orthonormal basis are the same gab = gab = ğab =
ğab = diag(1, 1, 1,−1), therefore the sign ˘ over the components of the metric
tensor may always be omitted.

Due to Eqs. (3.129) and (3.127), the components πi , ξi , σi , ui of the proper tetrad
vectors ĕa satisfy the equalities

πiπ
i = ξiξ

i = σiσ
i = −uiu

i = 1,

πiξ
i = πiσ

i = πiu
i = ξiσ

i = ξiu
i = σiu

i = 0. (3.130)

Let us consider the equations connecting the vector componentsCi , j i , Si , which
are contained in (3.62), (3.63):

Cijj − Cj j i = −iεijksCkSs, 2(j iSj − jjSi) = iεijks ĊkCs.

Replacing the components Ci = qi + ipi , j i , Si in these equations in terms of πi ,
ξ i , σ i , ui by formulas (3.129), we obtain that the components of the proper tetrad
vectors ĕa satisfy the equations

πiξj − πj ξ i = εijksσkus, σ iuj − σjui = −εijksπkξs,

ξ iσ j − ξj σ i = εijksπkus, πiuj − πjui = −εijksξkσs,

σ iπj − σjπi = εijks ξkus, ξ iuj − ξj ui = −εijksσkπs, (3.131)

defining, in particular, the orientation of the tetrad ĕa .
A connection between the orthonormal bases Эi and ĕa can be written in the

form

ĕa = h̆i
aЭi , Эi = h̆i

a ĕa, (3.132)
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where scale factors h̆i
a , h̆i

a in accordance with (3.128) and (3.129) are defined by
the matrices

h̆i
a =

∥
∥
∥
∥
∥
∥∥
∥

π1 ξ1 σ 1 u1

π2 ξ2 σ 2 u2

π3 ξ3 σ 3 u3

π4 ξ4 σ 4 u4

∥
∥
∥
∥
∥
∥∥
∥

, h̆i
a =

∥
∥
∥
∥
∥
∥∥
∥

π1 ξ1 σ 1 −u1

π2 ξ2 σ 2 −u2

π3 ξ3 σ 3 −u3

−π4 −ξ4 −σ 4 u4

∥
∥
∥
∥
∥
∥∥
∥

. (3.133)

From the equation uiu
i = −1 it follows |u4| � 1, and from the condition

j4 �0 and definition u4 = j4/ρ it follows u4 � 0. Therefore u4 � 1. Besides,
the contraction of the first equation in (3.131) with components πjξi gives

det ‖h̆i
a‖ = εijksπ

iξjσ kus = 1.

Thus, matrix (3.133) of the scale factors h̆i
a determines the restricted Lorentz

transformation (3.132) from the basis Эi to the basis ĕa .9

Let gab = diag(1, 1, 1,−1) be the contravariant components of metric tensor of
the pseudo-Euclidean space E1

4 , calculated in the proper basis ĕa . The components
gij of metric tensor of the space E1

4 , calculated in the basis Эi , are connected with
gab by the relation

gij = h̆i
a h̆

j
bg

ab.

Replacing here the quantities h̆i
a by formula (3.133), we obtain an expression of

the components gij of the metric tensor in terms of the vector components πi , ξ i ,
σ i , and ui

gij = πiπj + ξ iξj + σ iσ j − uiuj . (3.134)

It is obvious that Eqs. (3.134) are equivalent to conditions (3.130).
From definitions (3.128), (3.129), and (3.126) it follows that both a spinor with

components ψ and a spinor with components

η =
(
αI + μγ 5

)
ψ, η+ = ψ+ (αI + μγ 5

)
, (3.135)

where α and μ are arbitrary real numbers that are not simultaneously equal to zero
α2 + μ2 �= 0, correspond one and the same proper basis ĕa .

9The orthonormal vector tetrads defined by the spinor field of the first-rank in the space E1
4 , were

introduced by Gürsey [32], see also Takabayasi [65, 66].
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Indeed, replacing in definition (3.126) the spinor components ψ by η and
components ψ+ by η+, we obtain

j ′s = iη+γ sη = i
[
α2ψ+γ sψ + μ2ψ+γ 5γ sγ 5ψ + αμψ+(γ 5γ s + γ sγ 5)ψ

]

= i
(
α2 + μ2)ψ+γ sψ = (

α2 + μ2)j s.

Under the transformation of this equation it is necessary to take into account that
the Dirac matrices satisfy the equations (see (3.11))

γ 5γ i + γ iγ 5 = 0, γ 5γ iγ 5 = γ i.

In a similar way, the validity of the following equalities can be shown

S′i = η+ ∗
γ iη = (

α2 + μ2)Si,

C′i = ηT Eγ iη = (
α2 + μ2)Ci,

ρ′ = (
S′
iS

′i)1/2 = (
α2 + μ2)ρ,

from which it follows:

1

ρ′ p
′i = 1

ρ
pi,

1

ρ′ q
′i = 1

ρ
qi,

1

ρ′ S
′i = 1

ρ
Si,

1

ρ′ j
′i = 1

ρ
j i

and consequently ĕ′
a = ĕa .

If ρ �= 0, then the components of the complex tensors Ci , Cij and the
components of the real antisymmetric tensor Mij can be expressed in terms of
the vector components πi , ξ i , σ i , ui and the invariants Ω , N connected with the
invariants ρ, η by the second relation in (3.66). Indeed, from definitions (3.126)
and (3.129) it follows

Cj = qj + ipj = ρ
(
ξj + iπj

)
. (3.136)

To obtain an expression of the tensor componentsCij in terms of πi , ξ i , σ i , ui we
contract the equations (g) in (3.62) with the pseudotensor Levi-Civita components
εijks with respect to the indices i, j . We have

− NCij + 1

2
εijksΩCks = CiSj − CjSi. (3.137)

From the equations (g) in (3.62) and (3.137) it follows

ρ2Cij = ΩεijksSkCs + N
(
SiCj − SjCi

)
.
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From this taking into account the equations (h) in (3.62), (3.136), and defini-
tions (3.129), we get

Cij = Ω
(
πiuj − πjui

)− N
(
ξ iσ j − ξj σ i

)

+ i
[− Ω

(
ξ iuj − ξj ui

)+ N
(
σ iπj − σjπi

)]
. (3.138)

Similar transformations of the equations (k) in (3.60) give the following expression
for the real components Mij :

Mij = Ω
(
πiξj − πjξ i

)+ N
(
σ iuj − σjui

)
. (3.139)

Since the tensors C are completely determined by the spinor ψ , then from
equalities (3.136) and (3.138) it follows that specifying of the vector componentsπi ,
ξ i , σ i , ui and two invariants Ω , N , at least one of which is nonzero, also completely
determines the spinor ψ . However, the connection between a spinor ψ and quantities
πi , ξ i , σ i , ui , Ω , N is not one-to-one, since the vector components πi , ξ i , σ i , ui

are determined only if ρ2 = Ω2 + N2 �= 0.10

Since the components of vectors π̆a , ξ̆ a , σ̆ a , and ŭa in the proper basis ĕa have
the form

π̆a = (1, 0, 0, 0), ξ̆ a = (0, 1, 0, 0),

σ̆ a = (0, 0, 1, 0), ŭa = (0, 0, 0, 1),

then from Eqs. (3.129) and (3.139) it follows that the real tensors D defined by
spinor ψ in accordance with formulas (3.58), in the basis ĕa are defined by the
components

M̆ab =

∥
∥
∥
∥
∥∥
∥
∥

0 Ω 0 0
−Ω 0 0 0

0 0 0 N

0 0 −N 0

∥
∥
∥
∥
∥∥
∥
∥

,

j̆ a =
(

0, 0, 0,
√
Ω2 + N2

)
,

S̆a =
(

0, 0,
√
Ω2 + N2, 0

)
.

(3.140)

10The quantities pi = ρπi , qi = ρξ i , Si = ρσ i , j i = ρui are defined by relations(3.126) and
for ρ = 0. However, one-to-one connection between ψ and quantities Ω , N , pi , qi , Si , j i does
not exist either. For example, for semispinors Ω = N = 0, pi = qi = 0. One nonzero isotropic
vector with components Si = j i or Si = −j i remaining in this case from tetrad ρĕa , determines
the semispinor components up to a factor exp(iϕ) only.
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The components of complex tensors C determined by a spinor ψ in accordance
with formulas (3.51), in basis ĕa are defined by the formulae

C̆ab =

∥
∥
∥
∥
∥∥
∥
∥

0 0 −iN Ω

0 0 −N −iΩ
iN N 0 0
−Ω iΩ 0 0

∥
∥
∥
∥
∥∥
∥
∥

,

C̆a =
(

i
√
Ω2 + N2,

√
Ω2 + N2, 0, 0

)
, (3.141)

which can be easily obtained by means of Eqs. (3.136) and (3.138).
Let us calculate components ψ̆A of a spinor ψ in the proper basis ĕa . For this

purpose it is possible to use formulae (3.54), which in the case under consideration
can be written in the form (for ηC = δBC )

ψ̆A = ψ̆BA

√
ψ̆BB

, (3.142)

‖ψ̆BA‖ = 1

4
[ρ (iγ1 + γ2) + N (γ23 + iγ13) + Ω (iγ24 − γ14)]E

−1.

When writing the second formula in (3.142) it is taken into account that tensors C

in the proper basis ĕa are defined by components (3.141).
If the invariant spintensors E and γi are determined by matrices (3.24) and (3.25),

then for quantities ψ̆BA in (3.142) we have

ψ̆BA = −1

2
ρ

∥∥
∥
∥
∥
∥∥
∥

0 0 0 0
0 exp iη 0 1
0 0 0 0
0 1 0 exp(−iη)

∥∥
∥
∥
∥
∥∥
∥

.

Here the invariants ρ, η are connected with the invariants Ω , N by the equality

Ω + iN = ρ exp iη. (3.143)

Using the first formula in (3.142) we obtain the following expression for ψ̆A:

ψ̆A = i
√

1
2ρ

∥
∥
∥
∥
∥∥
∥
∥
∥
∥

0

exp
(

i
2η
)

0

exp
(
− i

2η
)

∥
∥
∥
∥
∥∥
∥
∥
∥
∥

(3.144)
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The validity of formulas (3.144) can also be established directly, substitut-
ing (3.144) into definitions (3.56) and (3.64), that gives expressions (3.140)
and (3.141).

By means of the proper tetrad ĕa it is possible to introduce the proper complex
null tetrad ĕ◦

a , which is determined by vectors with components li , ni , mi , ṁi :

√
2 li = ui + σ i,

√
2 mi = πi − iξ i ,

√
2 ni = ui − σ i,

√
2 ṁi = πi + iξ i . (3.145)

By virtue of definitions (3.145) and conditions (3.130), the following equations
are satisfied

ṁim
i = −lin

i = 1,

li l
i = nin

i = mim
i = lim

i = nim
i = 0, (3.146)

which are equivalent to the equation

gij = −linj − lj ni + miṁj + mjṁi,

in which gij are the components of the metric tensor of the pseudo-Euclidean space
E1

4.
Equations (3.131) for the vectors of the orthonormal tetrad ĕa pass into the

following equations for the vectors of the null tetrad ĕ◦
a:

miṁj − mjṁi = iεijks lkns,

linj − lj ni = iεijksmkṁs,

minj − mjni = iεijksmkns,

milj − mj li = −iεijksmkls .

3.4.2 Field of Proper Tetrads, Determined by Field
of a First-Rank Spinor in the Minkowski Space

Let us consider the point four-dimensional pseudo-Euclidean space with the metric
signature (+,+,+,−) (the Minkowski space), referred to a Cartesian coordinate
system with the variables xi and a covariant orthonormal vector basis Эi . Let ψ =
ψ(xi) be the field of a four-components spinor in the Minkowski space, and this field
corresponds to a field of the real tensors D(xi) and a field of the complex tensors
C(xi) At all points of the Minkowski space, in which the invariant ρ2 = Ω2 + N2

of the spinor ψ is nonzero, it is possible to introduce a proper orthonormal basis
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with the vectors ĕa(x
i) determined by formulas (3.128), (3.129), (3.126). The Ricci

rotation coefficients Δ̆s,ij , corresponding to the orthonormal bases ĕa(x
i), in the

Cartesian system coordinates xi are defined by the relation

Δ̆s,ij = 1

2
gab

(
h̆i

a∂s h̆j
b − h̆j

a∂sh̆i
b
)
,

where coefficients h̆i
a are determined by the matrix (3.133), ∂s = ∂/∂xs is the

symbol of a partial derivative with respect to variable xs . Replacing here h̆i
a

by formula (3.133), we obtain the following expression for the Ricci rotation
coefficients Δ̆s,ij

Δ̆s,ij = 1

2

(
πi∂sπj − πj∂sπi + ξi∂sξj − ξj ∂sξi

+ σi∂sσj − σj ∂sσi − ui∂suj + uj∂sui

)
. (3.147)

The Ricci rotation coefficients (3.147) corresponding to the proper bases ĕa(x
i),

one can express directly in terms of the spinor field ψ(xi) by the relation

Δ̆s,ij = 1

Ω2 + N2

[
Ω
(
ψ+γij ∂sψ − ∂sψ

+ · γijψ
)

+ N
(
ψ+γ 5γij ∂sψ − ∂sψ

+ · γ 5γijψ
)]
, (3.148)

in which γij = γ[iγj ]. Relation (3.148) will be proved in Sect. 3.6.
Thus, specifying in the Minkowski space the field of a four-component first-

rank spinor ψ(xi) defines the system of the proper orthonormal bases ĕa(x
i) by

formulas (3.128), (3.129), and (3.126). The Ricci rotation coefficients for such
system of bases are defined by relation (3.147) or relation (3.148).

From formula (3.147) we get the identities, which are checked directly taking
into account equations (3.130):

∂sπi = −Δ̆s,i
jπj , ∂sξi = −Δ̆s,i

j ξj ,

∂sσi = −Δ̆s,i
j σj , ∂sui = −Δ̆s,i

j uj . (3.149)

Along with the Ricci rotation coefficients Δ̆s,ij , defined by relation (3.147),
further on the coefficients Δ̆a,bc will also be used:

Δ̆a,bc = h̆s
ah̆

i
bh̆

j
cΔ̆s,ij ,
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where the scale factors h̆i
b are determined by matrix (3.133). By means of

Eqs. (3.147) and (3.130) for the symbols Δ̆a,bc one can find

Δ̆a,12 = ξ i ∂̆aπi, Δ̆a,31 = πi ∂̆aσi ,

Δ̆a,23 = σ i ∂̆aξi , Δ̆a,14 = ui∂̆aπi,

Δ̆a,24 = ui∂̆aξi , Δ̆a,34 = ui∂̆aσi . (3.150)

Here ∂̆a = h̆i
a∂i is the directional derivative

∂̆1 = πi∂i, ∂̆2 = ξ i∂i , ∂̆3 = σ i∂i ∂̆4 = ui∂i .

Equations (3.149) for vectors of the orthonormal tetrad ĕa(x
i) can be written in

the components of vectors of the null tetrad ĕ◦
a(x

i) as follows:

Dli = −(ε + ε̇)li + κ̇mi + κṁi,

Δli = −(γ +γ̇ )li + τ̇mi + τṁi,

δli = −(α̇ + β)li + �̇mi + σṁi ,

δ̇li = −(α + β̇)li + σ̇mi + �ṁi ,

Dni = (ε + ε̇)ni − πmi − π̇ṁi,

Δni = (γ +γ̇ )ni − νmi − ν̇ṁi ,

δni = (α̇ + β)ni − μmi − λ̇ṁi,

δ̇ni = (α + β̇)ni − λmi − μ̇ṁi,

Dmi = −π̇ li + κni + (ε̇ − ε)mi,

Δmi = −ν̇li + τni + (γ̇ − γ )mi,

δmi = −λ̇li + σni + (α̇ − β)mi,

δ̇mi = −μ̇li + �ni + (β̇ − α)mi.

(3.151)

The differential operators D, Δ, δ, δ̇ in Eqs. (3.151) are defined by the relations

D = li∂i, Δ = ni∂i, δ = mi∂i, δ̇ = ṁi∂i ,

while the coefficients α, β . . . in the right-hand side of Eqs. (3.151), called the spin-
coefficients, are defined as follows

2α = ni δ̇li − ṁi δ̇mi,

2β = niδli − ṁiδmi,

2γ = niΔli − ṁiΔmi,

2ε = niDli − ṁiDmi,

κ = miDli ,

τ = miΔli,

σ = miδli ,

� = miδ̇li ,

π = −ṁiDni,

ν = −ṁiΔni,

μ = −ṁiδni,

λ = −ṁi δ̇ni .

(3.152)



174 3 Spinors in the Four-Dimensional Space

These formulas for the spin-coefficients can easily be obtained by contracting
equations (3.151) with components of the vectors li , ni , mi , ṁi , taking into account
relations (3.146). It is necessary to distinguish the invariant ρ of the spinor field
ψ(xi) and the spin-coefficient �.

The operator of the derivative ∂i can be expressed in terms of the differential
operators D, Δ, δ, δ̇:

∂i = (− lin
j − lj ni + miṁ

j + ṁim
j
)
∂j = −liΔ − niD + miδ̇ + ṁiδ.

Equation (3.151) and formula (3.152) for the spin–coefficients are valid for any
null tetrads e◦

a(x
i) with components of the vectors of li , ni , mi , ṁi , satisfying

Eqs. (3.146).
Direct calculation shows that the Ricci rotation coefficients Δ̆a,bc and the spin–

coefficients are connected by the linear equations

Δ̆1,12 = i√
2
(−α̇ + α − β̇ + β), Δ̆1,34 = 1√

2
(α̇ + α + β̇ + β),

Δ̆1,23 = i

2
√

2
(σ̇ − σ + �̇ − � − μ̇ + μ − λ̇ + λ),

Δ̆1,31 = 1

2
√

2
(σ̇ + σ + �̇ + � + μ̇ + μ + λ̇ + λ),

Δ̆1,14 = 1

2
√

2
(−σ̇ − σ − �̇ − � + μ̇ + μ + λ̇ + λ),

Δ̆1,24 = i

2
√

2
(σ̇ − σ + �̇ − � + μ̇ − μ + λ̇ − λ),

Δ̆2,12 = 1√
2
(α̇ + α − β̇ − β), Δ̆2,34 = i√

2
(α̇ − α − β̇ + β),

Δ̆2,23 = 1

2
√

2
(σ̇ + σ − �̇ − � − μ̇ − μ + λ̇ + λ),

Δ̆2,31 = i

2
√

2
(−σ̇ + σ + �̇ − � − μ̇ + μ + λ̇ − λ),

Δ̆2,14 = i

2
√

2
(σ̇ − σ − �̇ + � − μ̇ + μ + λ̇ − λ),

Δ̆2,24 = 1

2
√

2
(σ̇ + σ − �̇ − � + μ̇ + μ − λ̇ − λ),

Δ̆3,12 = i√
2
(−ε̇ + ε + γ̇ − γ ), Δ̆3,34 = 1√

2
(ε̇ + ε −γ̇ − γ ),

Δ̆3,23 = i

2
√

2
(κ̇ − κ − τ̇ + τ − π̇ + π + ν̇ − ν),
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Δ3,31 = 1

2
√

2
(κ̇ + κ − τ̇ − τ + π̇ + π − ν̇ − ν),

Δ̆3,14 = 1

2
√

2
(−κ̇ − κ + τ̇ + τ + π̇ + π − ν̇ − ν),

Δ̆3,24 = i

2
√

2
(κ̇ − κ − τ̇ + τ + π̇ − π − ν̇ + ν),

Δ̆4,12 = i√
2
(−ε̇ + ε −γ̇ + γ ), Δ̆4,34 = 1√

2
(ε̇ + ε +γ̇ + γ ),

Δ̆4,23 = i

2
√

2
(κ̇ − κ + τ̇ − τ − π̇ + π − ν̇ + ν),

Δ̆4,31 = 1

2
√

2
(κ̇ + κ + τ̇ + τ + π̇ + π + ν̇ + ν),

Δ̆4,14 = 1

2
√

2
(−κ̇ − κ − τ̇ − τ + π̇ + π + ν̇ + ν),

Δ̆4,24 = i

2
√

2
(κ̇ − κ + τ̇ − τ + π̇ − π + ν̇ − ν). (3.153)

Let us give also an expression of the coefficients Δ̆s,ij = h̆s
ah̆i

bh̆j
cΔ̆a,bc in

terms of the vectors of the proper null tetrad

Δ̆s,ij = 1

2

(
mi∂sṁj − mj∂sṁi + ṁi∂smj − ṁj ∂smi

− li∂snj + lj ∂sni − ni∂s lj + nj∂s li
)
.

3.4.3 Proper Bases (Tetrads), Determined by a Semispinor
in the Space E1

4

Let us consider in the pseudo-Euclidean space E1
4 a four-component spinor ψ in

the spinbasis
∗
εA, which is determined by the Dirac matrices (3.24) and metric

spinor (3.25). The components of spinor ψ in the spinbasis
∗
εA can be represented

in the form

ψ =
∥∥
∥
∥
ξA

ηȦ

∥∥
∥
∥ , Ȧ, A = 1, 2,

where ξA, ηȦ determine in the pseudo-Euclidean space E1
4 the two-component

spinors with the fixed relative sign.
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Relations (3.126) and (3.129) determining the orthonormal tetrads ĕa in notations
of two-component spinors have the form

ρπj = σ
j

ḂA

(− ηḂξA − η̇Ȧξ̇B
)
,

ρξj = iσj

ḂA

(− ηḂξA + η̇Ȧξ̇B
)
,

ρσ j = σ
j

ḂA

(
ξ̇BξA − ηḂ η̇Ȧ

)
,

ρuj = σ
j

ḂA

(− ξ̇BξA − ηḂ η̇Ȧ
)
, (3.154)

and for the invariants Ω , N of the spinor ψ we have

Ω + iN = ρ exp iη = 2εBAξ
Bη̇Ȧ = 2 det

∥∥
∥
∥
∥
ξ1 η̇1̇

ξ2 η̇2̇

∥∥
∥
∥
∥
. (3.155)

The components of invariant spintensors σ
j

ḂA
in definitions (3.154) are defined

by the equalities (σα are the two-dimensional Pauli matrices, I is the unit two-
dimensional matrix)

‖σ 4
ḂA

‖ = −I, ‖σα

ḂA
‖ = −σα, α = 1, 2, 3.

Components (3.145) of the vectors of the complex null tetrad ĕ◦
a in the notations

of two-component spinors are written as follows11

li = −
√

2

ρ
σ i

ḂA
ηḂ η̇Ȧ, ni = −

√
2

ρ
σ i

ḂA
ξ̇BξA,

mi = −
√

2

ρ
σ i

ḂA
ηḂξA. (3.156)

Relations (3.154) and (3.156) put into correspondence to the two-component
spinor of the first-rank with undotted contravariant components ξA some set of the
orthonormal tetrads {ĕa} or null tetrads {ĕ◦

a}, obtained by using in (3.154), (3.156)
all ηȦ satisfying the condition ρ �= 0. In the same way, these relations put into
correspondence to the two-component spinor of the first-rank with dotted covariant
components ηȦ the set tetrads {ĕa} or {ĕ◦

a} determined by formulas (3.154), (3.156)
when using all ξA satisfying the condition ρ �= 0.

The sets of tetrads defined above {ĕa}, {ĕ◦
a}, corresponding to the spinor ψ with

the fixed components ξA (or to the spinor ψ with the fixed components ηȦ), it is
possible to narrow by specifying the invariants ρ, η of the spinor ψ . Let us consider,

11The null tetrad ĕ◦
a , determined by the equations analogous to Eqs. (3.156) and (3.154) for the

spinor fields with given invariants ρ = 2, η = 0, was used in [31].
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in particular, the set of four-component spinors ψ with fixed components ξA, for
which invariants ρ, η are the same. From condition ρ �= 0 and definition (3.155)

it follows that det

∥
∥
∥
∥
∥
ξ1 η̇1̇

ξ2 η̇2̇

∥
∥
∥
∥
∥

�= 0 and, therefore, spinors η and εξ̇ are linearly

independent. Therefore, an arbitrary linear transformation component ηȦ can be
written in the form

η′
Ȧ

= ηȦ + AηȦ + BεȦḂ ξ̇
B ,

where A, B are arbitrary complex numbers. It is easy to show that from condition
ρ′ = ρ, η′ = η it follows A = 0 and, thus, the set {ψ} with the fixed components
ξA and with the given invariants ρ, η can be determined by the components

{ψ} =
∥
∥∥
∥

ξA

ηȦ + BεȦḂ ξ̇B

∥
∥∥
∥ .

From definitions (3.155), (3.154) it follows that when transforming

ξ ′A = ξA, η′
Ȧ

= ηȦ + BεȦḂ ξ̇B (3.157)

the quantities ρ, η do not change, while the components of the vectors of tetrad ĕa
are transformed as

π ′
i = πi + (ui − σi)Re B,

ξ ′
i = ξi + (ui − σi) ImB,

σ ′
i = σi

(
1 − 1

2
ḂB

)
+ 1

2
ḂBui + πi Re B + ξi ImB,

u′
i = ui

(
1 + 1

2
ḂB

)
− 1

2
ḂBσi + πi Re B + ξi ImB. (3.158)

The vectors of the null tetrad ĕ◦
a under transformations (3.157) are transformed by

formulas

n′
i = ni,

m′
i = mi + Bni,

l′i = li + ḂBni + Ḃmi + Bṁi . (3.159)

Thus, the two-component spinor with the undotted covariant components ξA

determines an orthonormal tetrad ĕa and an complex null tetrad ĕ◦
a up to transfor-

mations (3.158), (3.159), that depend on an arbitrary complex parameter B.
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It is obvious that the similar statement is valid also for the components of a spinor
with the dotted index ηȦ. In this case from definitions (3.155), (3.154) it follows that
when transforming

η′
Ȧ

= ηȦ, ξ ′A = ξA + AεABη̇Ḃ

the quantities ρ, η do not change, and the components of the vectors of tetrad ĕa are
transformated as

π ′
i = πi + (ui + σi) Re A,

ξ ′
i = ξi − (ui + σi) ImA,

σ ′
i = σi

(
1 − 1

2
ȦA

)
− 1

2
ȦAui − πi Re A + ξi ImA,

u′
i = ui

(
1 + 1

2
ȦA

)
+ 1

2
ȦAσi + πi Re A − ξi ImA. (3.160)

The components of vectors of the tetrad ĕ◦
a in this case are transformed by formulas

l′i = li ,

m′
i = mi + Ali,

n′
i = ni + ȦAli + Ȧmi + Aṁi. (3.161)

Thus, the two-component spinor with the dotted covariant components ηȦ

determines an orthonormal tetrad ĕa and an complex null tetrad ĕ◦
a up to transfor-

mations (3.160), (3.161), that depend on an arbitrary complex parameter A.
In accordance with formulas (3.144) and (3.89), the spinors ξ and η are defined

in basis {ĕa(xi)} by the components

ξA =
∥
∥
∥
∥
∥

0

i
√

1
2ρ exp

(
i
2η
)
∥
∥
∥
∥
∥
, ηȦ =

∥
∥
∥
∥
∥

0

i
√

1
2ρ exp

(
− i

2η
)
∥
∥
∥
∥
∥
.

The proper tetrads {ĕa(xi)}, {ĕ◦
a(x

i)}, corresponding to the spinor fields ξA(xi)

(or ηȦ(x
i)), it is possible to specify also, using instead of conditions ρ = const,

η = const others additional invariant algebraic or differential conditions on the
fields ξA(xi), ηȦ(x

i). Such additional conditions on field ξA(xi), ηȦ(x
i) can be

formulated in the form of equations on the fields of scalars and vectors ρ(xi), η(xi),
ĕa(x

i), ĕ◦
a(x

i).
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3.4.4 Pseudo-Orthogonal Transformations of Proper Bases
of a Spinor Field

Let ψ be a four-component spinor of the first-rank in the pseudo-Euclidean space E1
4

referred to an orthonormal basis Эi . In the spinbasis defined by spintensors (3.24)
and (3.25), the spinor components ψ can be represented in the form

ψ =
∥∥
∥
∥
ξA

ηȦ

∥∥
∥
∥ , Ȧ, A = 1, 2,

where ξA and ηȦ determine in the space E1
4 two-component spinors with the fixed

relative sign.
Let us consider the gauge transformation of the spinor ψ , which is written with

the aid of the components ξA and ηȦ:

ξ ′A = αξA − βη̇Ȧ,

η̇′Ȧ = −γ ξA + δη̇Ȧ, (3.162)

where α, β, γ , and δ are arbitrary complex numbers satisfying the equation αδ −
βγ = 1.

It is obvious that transformations (3.162) form a group.
Transformation (3.162) by means of the components ψA and ψ+A is written as

follows

ψ ′A = 1

2
(α + δ̇)ψA + i

2
(α − δ̇)γ 5A

Bψ
B − 1

2
(β +γ̇ )ψ+A + i

2
(−β +γ̇ )γ 5A

Bψ
+B .

(3.163)
For the corresponding transformation of the conjugate components ψ+A we have

ψ ′+A = −1

2
(β̇ + γ )ψA + i

2
(β̇ − γ )γ 5A

Bψ
B

+ 1

2
(α̇ + δ)ψ+A + i

2
(−α̇ + δ)γ 5A

Bψ
+B .

Thus, transformations (3.163) are not linear transformations in the space of
four-component spinors, since in the right-hand side of Eq. (3.163) along with
components ψA there are the components of conjugate spinor ψ+A.

Let the spinor ψ corresponds to the invariants Ω , N and the proper orthonormal
basis ĕa defined by relations (3.154) and (3.155), while the spinor ψ ′ corresponds to
the invariants Ω ′, N ′ and the proper orthonormal basis ĕ ′

a . For the complex invariant
Ω ′ + iN ′ we have

Ω ′ + iN ′ = 2eBAξ
′Bη̇′Ȧ. (3.164)
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Replacing here the components of spinors ξ ′, η′ by formula (3.162), we find that
invariants Ω , N do not change under the gauge transformation (3.162):

Ω ′ + iN ′ = (αδ − βγ )2eBAξ
Bη̇Ȧ = Ω + iN. (3.165)

From this it follows that the invariants ρ and η also do not change under these
transformations

ρ′ = ρ, η′ = η.

The calculations similar to (3.164)–(3.165) give the following formulas for the
transformation of the components of the vectors πi , ξ i , σ i , ui , corresponding to
transformation (3.162):

π ′i = l11π
i + l21ξ

i + l31σ
i + l41u

i,

ξ ′i = l12π
i + l22ξ

i + l32σ
i + l42u

i,

σ ′i = l13π
i + l23ξ

i + l33σ
i + l43u

i,

u′i = l14π
i + l24ξ

i + l34σ
i + l44u

i, (3.166)

Here lba are defined by the matrix

lba = 1

2

∥
∥
∥
∥∥
∥
∥
∥

α̇δ + β̇γ +γ̇ β + δ̇α i(−α̇δ − β̇γ +γ̇ β + δ̇α)

i(α̇δ − β̇γ +γ̇ β − δ̇α) α̇δ − β̇γ −γ̇ β + δ̇α

α̇γ − β̇δ +γ̇ α − δ̇β i(−α̇γ + β̇δ +γ̇ α − δ̇β)

−α̇γ − β̇δ −γ̇ α − δ̇β i(α̇γ + β̇δ −γ̇ α − δ̇β)

α̇β + β̇α −γ̇ δ − δ̇γ −α̇β − β̇α −γ̇ δ − δ̇γ

i(α̇β − β̇α −γ̇ δ + δ̇γ ) i(−α̇β + β̇α −γ̇ δ + δ̇γ )

α̇α − β̇β −γ̇ γ + δ̇δ −α̇α + β̇β −γ̇ γ + δ̇δ)

−α̇α − β̇β +γ̇ γ + δ̇δ α̇α + β̇β +γ̇ γ + δ̇δ

∥
∥
∥
∥
∥
∥∥
∥

. (3.167)

Transformation (3.166) can be written as the transformation of the scale factors
determined by relations (3.133):

h̆′i
a = lbah̆

i
b. (3.168)

Relation (3.168) means that the proper bases ĕa of the spinor field ψ under
transformations (3.162) are subjected to the transformation

ĕ ′
a = lba ĕb. (3.169)
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The transformation from orthonormal bases ĕa and ĕ ′
a to the orthonormal basis

Эi of the pseudo-Euclidean space E1
4 is the restricted pseudo-orthogonal Lorentz

transformation. Therefore and transformation (3.169) also is the restricted pseudo-
orthogonal transformation. The pseudo-orthogonality of the matrix ‖lba‖ also
follows directly from definition (3.167).

It is easy to see that to the Pauli transformation

ξ ′A = αξA − βη̇Ȧ,

η̇′Ȧ = β̇ξA + α̇η̇Ȧ,

or ψ ′A = αψA − iβγ 5A
Bψ

+B, α̇α + β̇β = 1,

corresponds the three-dimensional orthogonal transformation of the vectors ĕ1, ĕ2,
and ĕ3. In this case the transformation coefficients lba are defined by the matrix

lba =

∥
∥
∥
∥∥
∥
∥
∥

1
2 (α̇

2 − β̇2 − β2 + α2) i
2 (−α̇2 + β̇2 − β2 + α2) α̇β + β̇α 0

i
2 (α̇

2 + β̇2 − β2 − α2) 1
2 (α̇

2 + β̇2 + β2 + α2) i(α̇β − β̇α) 0
−α̇β̇ − αβ i(α̇β̇ − αβ) α̇α − β̇β 0

0 0 0 1

∥
∥
∥
∥∥
∥
∥
∥

.

To the transformation of spinors

ξ ′A = αξA − βη̇Ȧ,

η̇′Ȧ = −β̇ξA + α̇η̇Ȧ,

or ψ ′A = αψA − βψ+A, α̇α − β̇β = 1 (3.170)

corresponds the three-dimensional pseudo-orthogonal transformation of the vectors
ĕ1, ĕ2, and ĕ4. In this case for the transformation coefficients lba we have

lba =

∥
∥
∥∥
∥
∥
∥
∥

1
2 (α̇

2 + β̇2 + β2 + α2) i
2 (−α̇2 − β̇2 + β2 + α2) 0 −α̇β − β̇α

i
2 (α̇

2 − β̇2 + β2 − α2) 1
2 (α̇

2 − β̇2 − β2 + α2) 0 i(α̇β + β̇α)

0 0 1 0
−α̇β̇ − αβ i(α̇β̇ − αβ) 0 α̇α + β̇β

∥
∥
∥∥
∥
∥
∥
∥

.

(3.171)

If coefficients α, β, γ , and δ in transformation (3.162) are real then the vector ĕ2
does not change ĕ ′

2 = ĕ2 while the vectors ĕ1, ĕ3, ĕ4 are subjected to the arbitrary
three-dimensional pseudo-orthogonal transformation.

Let us now consider a restricted pseudo-orthogonal transformation of the basis
Эi of the pseudo-Euclidean space E1

4 :

Э′
i = lj iЭj , det ‖lj i‖ = 1, l44 � 1. (3.172)
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Transformation (3.172) corresponds to the transformation S of the spinors ψ

determined by Eqs. (3.43). If the spintensors E and γi are defined by formulas (3.24)
and (3.25), then the matrix of the spinor transformation S is written in the form

S = ±
∥∥
∥
∥
A

(ȦT )−1

∥∥
∥
∥ , (3.173)

where A is an unimodular two-dimensional matrix

A =
∥
∥
∥∥
α β

γ δ

∥
∥
∥∥ , αδ − βγ = 1. (3.174)

Replacing in definitions (3.129) and (3.126) the components of the spinor ψ by
the formula ψ ′ = Sψ , where S is defined by equalities (3.173) and (3.174), for
transformation of the vectors of the proper tetrad we find

π ′
i = lj iπj , ξ ′

i = lj iξj ,

σ ′
i = lj iσj , u′

i = lj iuj , (3.175)

where the transformation coefficients lj i are defined by matrix (3.167). Rela-
tion (3.175) can also be written as the transformation of the scale factors h̆i

a

determined by matrix (3.133):

h̆′
i
a = lj i h̆j

a. (3.176)

Thus, the coefficients lj i of the pseudo-orthogonal transformation (3.176) of the
proper basis ĕa turns out to be the same, as in equality (3.168), corresponding to the
gauge transformation (3.162) of the spinor ψ .

3.5 Complex Orthogonal Vector Triads, Defined by a Spinor
Field

Let us define three antisymmetric complex tensors of the second rank by the
contravariant components αij , βij , and λij in the orthonormal basis Эi by means of
the vectors of the proper orthonormal tetrad ĕa determined by a first-rank spinor ψ

by formulas (3.128), (3.129), and (3.126):

αij = −uiπj + ujπi − iεijksukπs,

βij = −uiξj + uj ξ i − iεijksukξs,

λij = −uiσ j + ujσ i − iεijksukσs . (3.177)



3.5 Complex Orthogonal Vector Triads 183

Consider first some simple algebraic properties of the tensors determined by
components (3.177). Direct calculation shows that from definitions (3.177) and
conditions (3.130) it follows that the tensors with components αij , βij , and λij are
antiself-dual

1

2
εijksαks = −iαij ,

1

2
εijksβks = −iβij ,

1

2
εijksλks = −iλij

and satisfy the invariant bilinear equations

αi
jα

js = βi
jβ

js = λi
jλ

js = gis , (3.178)

and also the following equations

αinβn
j = −iλij , βinλn

j = −iαij , λinαn
j = −iβij . (3.179)

A calculation of the invariants of the tensors determined by components (3.177)
gives

1

4
αij α

ij = 1

4
βij β

ij = 1

4
λij λ

ij = −1,

1

8
εijksα

ij αks = 1

8
εijksβ

ij βks = 1

8
εijksλ

ij λks = i.

and

det ‖αij‖ = det ‖βij‖ = det ‖λij ‖ = −1. (3.180)

By means of Eqs. (3.52), (3.60), and (3.62) the components of tensors (3.177)
can be expressed in terms of the components of antisymmetric tensors Cij and Mij

determined by relations (3.51) and (3.58):

αij = 1

Ω + iN

(
Re Cij + i

2
εijks Re Cks

)
,

βij = − 1

Ω + iN

(
ImCij + i

2
εijks ImCks

)
,

λij = i

Ω + iN

(
Mij + i

2
εijksMks

)
. (3.181)

The inverse relations have the form

Cij = Ω Re αij − N Imαij + i
(− Ω Re βij + N Imβij

)
,

Mij = N Re λij + Ω Imλij .
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Since a spinor ψ is completely defined by specifying the tensor components Cij

and Mij ,12 from these equalities it follows that specifying the invariants Ω , N and
the antisymmetric tensors with components αij , βij , λij also completely defines a
spinor ψ .

The Ricci rotation coefficients Δ̆k,ij corresponding to the proper tetrads ĕa of a
spinor field ψ(xi), can be expressed in terms of the components of tensors (3.177).
We give an expression for the quantities Δ̆k,ij + i

2εijmnΔ̆k,
mn, used in the sequel,

in terms of the tensor components αij , βij , and λij :

Δ̆k,ij + i

2
εijmnΔ̆k,

mn = 1

4

(− αis∂kαj
s + αjs∂kαi

s

− βis∂kβj
s + βjs∂kβi

s − λis∂kλj
s + λjs∂kλi

s
)
. (3.182)

The derivation of relation(3.182) is quite cumbersome, however the validity of
this relation can be established directly substituting (3.177) in (3.182) and this
gives (3.147).

It is obvious that the quantities Δ̆k,ij + i
2εijmnΔ̆k,

mn are antiself-dual over the
indices i, j :

1

2
εijmn

(
Δ̆k,

mn + i

2
εmnpqΔ̆k,pq

)
= −i

(
Δ̆k,ij + i

2
εijmnΔ̆k,

mn

)
.

Let us introduce the notations for the tensor components αij , βij , and λij :

αα = αα4, βα = βα4, λα = λα4, α = 1, 2, 3.

Since the tensors with components αij , βij , λij are antiself-dual, we obtain that the
matrices of the components αij , βij , λij are defined only by the quantities αα , βα,
and λα

αij =

∥
∥
∥
∥
∥∥
∥
∥

0 iα3 −iα2 α1

−iα3 0 iα1 α2

iα2 −iα1 0 α3

−α1 −α2 −α3 0

∥
∥
∥
∥
∥∥
∥
∥

, βij =

∥
∥
∥
∥
∥∥
∥
∥

0 iβ3 −iβ2 β1

−iβ3 0 iβ1 β2

iβ2 −iβ1 0 β3

−β1 −β2 −β3 0

∥
∥
∥
∥
∥∥
∥
∥

,

λij =

∥∥
∥
∥
∥
∥
∥∥

0 iλ3 −iλ2 λ1

−iλ3 0 iλ1 λ2

iλ2 −iλ1 0 λ3

−λ1 −λ2 −λ3 0

∥∥
∥
∥
∥
∥
∥∥

. (3.183)

12As it was already noted (see p. 134), specifying only the tensor components Cij determines two
spinors with components ψ and iγ 5ψ . Under transformation ψ → iγ 5ψ the components Mij pass
into −Mij . Therefore specifying Cij and Mij completely determines the spinor ψ .
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If the spinbasis is defined by the matrices E and γa in the form (3.24) and (3.25),
then using definitions (3.181) and formulas (3.56), (3.64), for the components αα ,
βα, λα one can find

α1 = 1

Ω + iN

(
ψ1ψ1 − ψ2ψ2 + ψ̇3ψ̇3 − ψ̇4ψ̇4),

α2 = i

Ω + iN

(
ψ1ψ1 + ψ2ψ2 − ψ̇3ψ̇3 − ψ̇4ψ̇4),

α3 = 2

Ω + iN

(− ψ1ψ2 − ψ̇3ψ̇4),

β1 = i

Ω + iN

(
ψ1ψ1 − ψ2ψ2 − ψ̇3ψ̇3 + ψ̇4ψ̇4),

β2 = 1

Ω + iN

(− ψ1ψ1 − ψ2ψ2 − ψ̇3ψ̇3 − ψ̇4ψ̇4),

β3 = 2i

Ω + iN

(− ψ1ψ2 + ψ̇3ψ̇4),

λ1 = 2

Ω + iN

(− ψ̇3ψ2 − ψ̇4ψ1),

λ2 = 2i

Ω + iN

(
ψ̇3ψ2 − ψ̇4ψ1),

λ3 = 2

Ω + iN

(− ψ̇3ψ1 + ψ̇4ψ2), (3.184)

where Ω + iN = 2
(
ψ̇3ψ1 + ψ̇4ψ2

)
.

Let us establish the transformation law of the quantities αα , βα , and λα under the
restricted Lorentz transformation (3.172) of the orthonormal basis Эi of the pseudo-
Euclidean space E1

4 . If the spinbasis is defined by the spintensors (3.24) and (3.25),
then the transformation matrix S of the spinor components is defined by the relations
(3.173) and (3.174). Replacing the components ψ in definitions (3.184) by the
formula ψ ′ = Sψ and taking into account that the invariants Ω and N do not
change under such transformations, for the transformation of the quantities αα , βα ,
and λα we get

α′
α = �βααβ, β ′

α = �βαββ, λ′
α = �βαλβ, (3.185)

where the complex matrix L = ‖�βα‖ has the form

L =
∥
∥∥
∥
∥
∥

1
2 (α

2 − β2 − γ 2 + δ2) i
2 (α

2 − β2 + γ 2 − δ2) −αγ + βδ
i
2 (−α2 − β2 + γ 2 + δ2) 1

2 (α
2 + β2 + γ 2 + δ2) i(αγ + βδ)

−αβ + γ δ −i(αβ + γ δ) αδ + βγ

∥
∥∥
∥
∥
∥
. (3.186)



186 3 Spinors in the Four-Dimensional Space

From definition (3.186) it follows that the product LTL is the unit matrix LTL = I .
Consequently, L is the complex orthogonal matrix LT = L−1. Thus, under the
restricted Lorentz transformation (3.172) of the bases Эi the quantities λα , αα , and
βα are subjected to the complex orthogonal transformation (3.185).

In particular, to the Lorentz transformation

L =

∥∥
∥
∥
∥
∥∥
∥

cosϕ − sinϕ

sin ϕ cosϕ
cosh ξ sinh ξ

sinh ξ cosh ξ

∥∥
∥
∥
∥
∥∥
∥

,

(rotation in the Э1,Э2 plane through an angle ϕ and boost along the Э3 direction)
there corresponds the spinor transformation A and the complex orthogonal transfor-
mation L [34]

A =
∥
∥
∥
∥

exp[ i
2 (ϕ + iξ)] 0

0 exp[− i
2(ϕ + iξ)]

∥
∥
∥
∥ ,

L =
∥
∥
∥
∥
∥∥

cos(ϕ + iξ) − sin(ϕ + iξ) 0
sin(ϕ + iξ) cos(ϕ + iξ) 0

0 0 1

∥
∥
∥
∥
∥∥
.

It is easy to verify that the set of all matrices L, corresponding to the restricted
Lorentz group, forms a group, which realizes a representation of the restricted
Lorentz group in the three-dimensional complex Euclidean space E+

3 .
Let EEEα (α = 1, 2, 3) be vectors of an orthonormal basis in the space E+

3 . The
metric tensor of the space E+

3 in the basis EEEα is defined by Kronecker deltas δαβ ,
δαβ . Consider in the space E+

3 three vectors

ĔEE1 = ααEEEα, ĔEE2 = βαEEEα, ĔEE3 = λαEEEα

with components αα , βα, and λα defined by equalities (3.184).
Taking into account notations (3.183), it is easy to find that Eqs. (3.178) and

(3.179) for i = j can be written in the form

αμα
μ = βμβ

μ = λμλ
μ = 1,

αμβ
μ = αμλ

μ = βμλ
μ = 0, (3.187)

or

αμαν + βμβν + λμλν = δμν.
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Thus, the components αμ, βμ, and λμ define in the space E+
3 three complex

orthonormal vectors (complex triad). Equations (3.179) for i �= j pass into the
equations

αα = εαβγ ββλγ , βα = εαβγ λβαγ , λα = εαβγ αββγ .

It is clear that specifying of vectors of the triad ĔEEα and invariants Ω , N

completely defines the spinor ψ , since the components of tensors αij , βij , and λij

are defined by equalities (3.183) in terms of the components of vectors of the triad
ĔEEα ,

Let us now consider the field of a spinor the first-rank ψ(xi) in the Cartesian
coordinate system of the Minkowski space to which there the field of the complex
vector triads ĔEEα(x

i) corresponds. Let δk,αβ be the Ricci rotation coefficients,
corresponding to the field ĔEEα(x

i). By definition we have

δk,αβ = 1

2
(αα∂kαβ −αβ∂kαα +βα∂kββ −ββ∂kβα +λα∂kλβ −λβ∂kλα). (3.188)

From definition (3.188) and conditions (3.187) it follows

∂kαα = −δk,α
βαβ, ∂kβα = −δk,α

βββ, ∂kλα = −δk,α
βλβ .

Using expression (3.182) for the quantities Δ̆k,ij + i
2εijmnΔ̆k,

mn and expres-
sion (3.183) for the components of tensors αij , βij , and λij , we find the connection
between the Ricci rotation coefficients δk,αβ and Δ̆k,ij :

Δ̆k,ij + i

2
εijmnΔ̆k,

mn =

∥
∥
∥
∥
∥∥
∥
∥

0 δk,12 −δk,31 −iδk,23

−δk,12 0 δk,23 −iδk,31

δk,13 −δk,23 0 −iδk,12

iδk,23 iδk,31 iδk,12 0

∥
∥
∥
∥
∥∥
∥
∥

or

δk,αβ = Δ̆k,αβ + i

2
εαβmnΔ̆k,

mn. (3.189)

Let us give also an expression of the Ricci rotation coefficients δk,αβ directly in
terms of the spinor field ψ:

δk,αβ = 1

Ω + iN

[
ψ+ (I + iγ 5

)
γαβ∂kψ − ∂kψ

+ ·
(
I + iγ 5

)
γαβψ

]
.

(3.190)

Expression (3.190) can be obtained, using expression (3.148) for Δ̆k,ij and defini-
tion (3.189).
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3.5.1 The Group of Orthogonal Transformations
of the Complex Vector Triad ĔEEα

Let us represent the components of the first-rank spinor ψ in spinbasis (3.24), (3.25)
in the form

ψ =
∥
∥∥
∥
ξA

ηȦ

∥
∥∥
∥ , Ȧ, A = 1, 2, (3.191)

where ξA and ηȦ define in the pseudo-Euclidean space E1
4 two-component spinors

with the fixed relative sign.
Let us consider a group of the gauge transformations of the four-component

spinor ψ

ξ ′A = αξA − βη̇Ȧ,

η̇′Ȧ = −γ ξA + δη̇Ȧ, (3.192)

where α, β, γ , and δ are arbitrary complex numbers satisfying the equation αδ −
βγ = 1.

Let a spinor ψ corresponds to an orthonormal triad ĔEEα, and a spinor ψ ′ corre-
sponds to an orthonormal triad ĔEE ′

α . Let us calculate the orthogonal transformation
from the basis ĔEE ′

α to the basis ĔEEα . Replacing in definitions (3.184) the components
of the spinor ψ by formulas (3.191) and (3.192) and taking into account the
invariance of the quantity Ω + iN under transformation (3.192), we obtain

α′α = �1
1α

α + �2
1β

α + �3
1λ

α,

β ′α = �1
2α

α + �2
2β

α + �3
2λ

α,

λ′α = �1
3α

α + �2
3β

α + �3
3λ

α. (3.193)

The complex coefficients �αβ in these formulas are defined by the three-
dimensional orthogonal matrix (3.186).

We introduce the matrices of the scale factors Hα
β and H ′α

β :

Hα
β =

∥
∥
∥∥
∥
∥

α1 β1 λ1

α2 β2 λ2

α3 β3 λ3

∥
∥
∥∥
∥
∥
, H ′α

β =
∥
∥
∥∥
∥
∥

α′1 β ′1 λ′1
α′2 β ′2 λ′2
α′3 β ′3 λ′3

∥
∥
∥∥
∥
∥
,

connecting bases ĔEEα ,ĔEE ′
α and EEEα by the equalities

ĔEEα = Hβ
α EEEβ, ĔEE ′

α = H ′β
α EEEβ.
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Then transformation (3.193) can be written in the form

H ′β
α = �γ αH

β
γ .

Therefore the connection between bases ĔEEα and ĔEE ′
α alpha is determined by the

complex coefficients �βα:

ĔEE ′
α = �βαĔEEβ.

3.6 Expression for Derivatives of a Spinor Field in Terms
of Derivatives of Tensor Fields

The relations obtained in the previous sections allow to express derivatives with
respect to xi of a field ψ(xi) in the Minkowski space in terms of derivatives of
the different scalars, vectors and tensors determined by the field ψ(xi). Below we
obtain expressions for derivatives of the first-rank spinor field in terms of derivatives
of its invariants and the Ricci rotation coefficients of the proper tetrads, and also in
terms of derivatives of the complex tensors C. The formulas, obtained here, are very
useful and important in various applications.

3.6.1 Expressions for Derivatives of the First-Rank Spinor
Field in Terms of Derivatives of Its Invariants
and the Ricci Rotation Coefficients of Proper Tetrads

Let ψ(xi) be the contravariant components of the first-rank spinor calculated in the
Cartesian coordinate system with variables xi and orthonormal vector bases Эi in
Minkowski space. Let us introduce the proper bases ĕa(x

i) of the spinor field ψ(xi)

connected with the bases Эi by the scale factors

ĕa(x
i) = h̆i

aЭi , Эi = h̆i
a ĕa(x

i),

which are defined by matrices (3.133). Transformation from basis Эi to basis ĕa is
the restricted Lorentz transformation.

We denote the column from the contravariant components of the spinor, cal-
culated in the proper basis ĕa , by the symbol ψ̆ . The components ψ and ψ̆ are
connected by the spinor transformation

ψ̆ = Sψ, (3.194)
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where for the matrix S according to definitions (3.43) we have

h̆j
aSγj = γaS, ST ES = E. (3.195)

If the Dirac matrices γi and the metric spinor E are determined by equal-
ities (3.24) and (3.25), then the components of the spinor ψ̆ are defined by
equalities (3.144). Differentiating equalities (3.144) with respect to xα, we get

∂iψ̆ = 1

2

(
I∂i ln ρ − γ 5∂iη

)
ψ̆. (3.196)

It is obvious that relation (3.196) is valid also for any choice of the matrices E and
γ i .

From (3.194), taking into account equality (3.196), we find

∂iψ = ∂iS
−1 · ψ̆ + S−1 1

2

(
I∂i lnρ − γ 5∂iη

)
ψ̆. (3.197)

From the invariance of spintensor γ 5 under restricted Lorentz transformations,
the matrix S in (3.194) commutes with γ 5, i.e., Sγ 5 = γ 5S. Therefore equal-
ity (3.197) it is possible to rewrite in the form

∂iψ = ∂iS
−1 · Sψ + 1

2

(
I∂i lnρ − γ 5∂iη

)
ψ. (3.198)

To calculate the quantity ∂iS
−1 in this equality we differentiate the first equation

in (3.195) with respect to xs :

∂s h̆
j
a · Sγj + h̆j

a∂sSγj = γa∂sS.

From this, after a transformation taking into account the definition of the Ricci
rotation coefficients (see (2.37))

Δ̆s,ij = 1

2

(
h̆i

a∂sh̆ja − h̆j
a∂sh̆ia

) ≡ h̆i
a∂sh̆ja, (3.199)

we find

Δ̆s,i
j γj = γi

(
S−1∂sS

)
−
(
S−1∂sS

)
γi. (3.200)

Differentiation of the second relation in (3.195) after simple transformations gives

(
S−1∂sS

)T
E + E

(
S−1∂sS

)
= 0. (3.201)
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From Eqs. (3.200) and (3.201) it follows

S−1∂sS = 1

4
Δ̆s,ij γ

ij .

Whence for derivatives ∂sS and ∂sS
−1 we get

∂sS = 1

4
Δ̆s,ij Sγ

ij , ∂sS
−1 = −1

4
Δ̆s,ijγ

ij S−1. (3.202)

Replacing in (3.198) derivatives ∂iS−1 according to equality (3.202), for derivatives
of an arbitrary first-rank spinor field, specified by the contravariant components ψ

in the basis Эi , we obtain the following relation[88, 89]

∂sψ =
(

1

2
I∂s lnρ − 1

2
γ 5∂sη − 1

4
Δ̆s,ij γ

ij

)
ψ. (3.203a)

For the conjugate spinor field with the covariant components ψ+(xα) we have

∂sψ
+ = ψ+

(
1

2
I∂s ln ρ − 1

2
γ 5∂sη + 1

4
Δ̆s,ij γ

ij

)
. (3.203b)

The Ricci rotation coefficients Δ̆s,ij in formulas (3.203) correspond to proper bases
ĕa(x

i) of the spinor field ψ(xi) and are defined by the relation

Δ̆s,ij = 1

2

(
πi∂sπj − πj∂sπi + ξi∂sξj − ξj ∂sξi

+ σi∂sσj − σj∂sσi − ui∂suj + uj∂sui

)
,

which can be obtained from definition (3.199) replacing in it the coefficients h̆i
a by

formulas (3.133).
To write these formulas in a curvilinear coordinate system of the pseudo-

Euclidean space or in the Riemannian space it suffices to replace in them the symbol
of partial derivative ∂i by the symbol of the covariant derivative ∇i (see (5.105)
and (5.106) in Chap. 5).

Formulas (3.203) give the expression of derivatives of the spinor fields ψ(xs)

and ψ+(xs) in terms of derivatives of the invariants ρ(xs), η(xs), and the vector
fields πi(xs), ξ i(xs), σ i(xs), ui(xs) determined by the fields ψ(xs) and ψ+(xs).
These formulas are the identities by virtue of definitions (3.143), (3.129), (3.126) of
the quantities ρ(xs), η(xs), πi(xs), ξ i(xs), σ i(xs), ui(xs). These formulas are very
convenient for tensor reformulations of differential spinor equations.
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Using relation (3.203a), it is not difficult to obtain also expressions for derivatives
of the fields of semispinors ψ(I) = 1

2 (I + iγ 5)ψ and ψ(II) = 1
2 (I − iγ 5)ψ:

∂sψ(I) = 1

2

[
I∂s(ln ρ + iη) − 1

4

(
Δ̆s,ij + i

2
εijmnΔ̆s,

mn

)
γ ij

]
ψ(I),

∂sψ(II ) = 1

2

[
I∂s(ln ρ − iη) − 1

4

(
Δ̆s,ij − i

2
εijmnΔ̆s,

mn

)
γ ij

]
ψ(II) (3.204)

or, in notations (3.88) and (3.89) of the two-component spinors

∂sξ
A = 1

2
ξA∂s(lnρ + iη) + i

8

(
Δ̆s,ij + i

2
εijmnΔ̆s,

mn

)
σA

B
ij ξB,

∂sηȦ = 1

2
ηȦ∂s(ln ρ − iη) + i

8

(
Δ̆s,ij − i

2
εijmnΔ̆s,

mn

)
σ̇ B

A
ij ηḂ .

The components of spintensors σA
B
ij are defined by equality (3.99).

Bearing in mind the symmetry properties (3.104) of spintensors σ ij , formulas for
∂sξ

A and ∂sηȦ can be written in a more compact form

∂sξ
A = 1

2
ξA∂s(ln ρ + iη) + i

4
Δ̆s,ijσ

A
B
ij ξB,

∂sηȦ = 1

2
ηȦ∂s(ln ρ − iη) + i

4
Δ̆s,ij σ̇

B
A
ij ηḂ . (3.205)

Using relations (3.203) it is easy to show the validity of expression (3.148)
for the Ricci rotation coefficients, corresponding to the proper bases ĕa . Indeed,
identities (3.11) imply the relations

γ ij γ 5 − γ 5γ ij = 0,

γ ij γ ks + γ ksγ ij = 2
[
−Iεijks + γ 5

(
gisgjk − gikgjs

)]
. (3.206)

Replacing in the right-hand side of formula (3.148) derivatives ∂iψ and ∂iψ
+ by

formulas (3.203) and taking into account relations (3.206) we find

1

Ω2 + N2

[
Ω
(
ψ+γij ∂sψ − ∂sψ

+ · γijψ
)+ N

(
ψ+γ 5γij ∂sψ − ∂sψ

+ · γ 5γijψ
)]

≡ 1

2
(
Ω2 + N2

) Δ̆s,mn

[
Ωψ+ (Iδmn

ij − γ 5εij
mn
)

+ N
(
γ 5δmn

ij + Iεij
mn
)]

.

(3.207)

Here δmn
ij = δmi δnj − δni δ

m
j ; coefficients Δ̆s,mn are defined by equalities (3.147).
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Taking into account definitions (3.58) and (3.59) of the invariants Ω and N , it is
possible to write the right-hand side of formula (3.207) in the form

1

2
(
Ω2 + N2

)Δ̆s,mn

[
Ω
(
Ωδmn

ij − Nεij
mn
)+ N

(
Nδmn

ij + Ωεij
mn
)] = Δ̆s,ij .

Thus, formula (3.148) is proved.

3.6.2 Expressions for Derivatives of Spinor Fields in Terms
of Derivatives of Complex Tensor Fields

Since a first-rank spinor ψ is completely defined by complex tensors C, it is obvious
that derivatives ∂iψ can be expressed also in terms of derivatives ∂iC. In order to
obtain such expression, we consider the obvious identity

ψA(ψB∂iψ
E + ψE∂iψ

B) = ψA∂i(ψ
BψE). (3.208)

Let us contract this identity with components of spintensor γ j
BAeDE with respect

to the indices A, B, E. Contraction of the left-hand side of identity (3.208) gives

γ
j

BAeDEψA
(
ψB∂iψ

E + ψE∂iψ
B
)

= Cj∂iψD+
(
γ

j

BAψ
A∂iψ

B
)
ψD. (3.209)

Using the symmetry property of the components of spintensors γ j
BA = γ

j
AB , we find

γ
j
BAψ

A∂iψ
B = 1

2
γ

j
BA

(
ψA∂iψ

B + ψB∂iψ
A
)

= 1

2
∂iC

j

and equality (3.209) can be continued

γ
j
BAeDEψA

(
ψB∂iψ

E + ψE∂iψ
B
)

= Cj∂iψD + 1

2
ψD∂iC

j . (3.210)

Contraction of the right-hand side of identity (3.208) taking into account the
second identity in (C.1) gives

γ
j
BAeDEψA∂i(ψ

BψE) = 1

4

(
eDA∂iC

j + γ
sj
DA∂iCs

− γ s
DA∂iCs

j + 1

2
εjsmn ∗

γ sDA∂iCmn

)
ψA. (3.211)
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Taking into account formulas (3.210) and (3.211), we obtain that the result of
contraction of identity (3.208) with components of spintensor γ

j
DEeBA gives the

following expression

Cj∂iψD = 1

4

(
− eDA∂iC

j + γ
sj
DA∂iCs − γ s

DA∂iCs
j

+ 1

2
εjsmn ∗

γ sDA∂iCmn

)
ψA (3.212)

or, in the matrix notations

Cj∂iψ = 1

4

(
−I∂iC

j + γ sj ∂iCs − γs∂iC
sj + 1

2
εjsmn ∗

γ s∂iCmn

)
ψ. (3.213)

For the conjugate spinor field we have

Ċj ∂iψ
+ = 1

4
ψ+

(
−I∂iĊ

j − γ sj ∂iĊs + γs∂iĊ
sj + 1

2
εjsmn ∗

γ s∂i Ċmn

)
.

To obtain the invariant expression ∂iψ in terms of ∂iC it is enough to contract
equation (3.213) with components of an arbitrary vector ηj satisfying the condition
ηjC

j �= 0 (for example, it is possible to take ηj = Ċj if the invariant ρ of the spinor
ψ is not equal to zero ρ �= 0)

∂iψ = 1

4ηnCn
ηj

(
−I∂iC

j + γ sj ∂iCs − γs∂iC
sj + 1

2
εjsmn ∗

γ s∂iCmn

)
ψ.

Completely analogous to the derivation of relation (3.212) given here, one can
show that the contraction of identity (3.208) with components of spintensor γ js

DEeBA

with respect to the indices E, B, A gives the following relation

Cjs∂iψD = 1

4

(
− eDA∂iC

js + γ s
DA∂iC

j − γ
j
DA∂iC

s + γ sn
DA∂iCn

j

− γ
jn
DA∂iCn

s − εjsmn ∗
γ nDA∂iCm + 1

2
εjsmnγ 5

DA∂iCmn

)
ψA. (3.214)

In the matrix notations formula (3.214) has the form

Cjs∂iψ = 1

4

(
− I∂iC

js + γ s∂iC
j − γ j ∂iC

s + γ sn∂iCn
j

− γ jn∂iCn
s − εjsmn ∗

γ n∂iCm + 1

2
εjsmnγ 5∂iCmn

)
ψ. (3.215)
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For the conjugate spinor field we find

Ċjs∂iψ
+ = 1

4
ψ+

(
− I∂iĊ

js − γ s∂i Ċ
j + γ j ∂iĊ

s − γ sn∂iĊn
j

+ γ jn∂iĊn
s − εjsmn ∗

γ n∂iĊm + 1

2
εjsmnγ 5∂iĊmn

)
.

From (3.215) we get the expression for the derivative of the spinor components

∂iψ = 1

4ηpqCpq
ηjs

(
− I∂iC

js + γ s∂iC
j − γ j ∂iC

s + γ sn∂iCn
j

− γ jn∂iCn
s − εjsmn ∗

γ n∂iCm + 1

2
εjsmnγ 5∂iCmn

)
ψ, (3.216)

in which the components of an arbitrary antisymmetric tensor ηpq satisfy the
condition ηpqC

pq �= 0.

3.7 Invariant Subspaces of Spinors

Let us consider in the pseudo-Euclidean space E1
4 an equation that is invariant

under the restricted Lorentz transformations of orthonormal bases Эi and linear
with respect to the components of the first-rank spinor ψA and the components of
the conjugate spinor ψ+A:

ψA = iηγ 5A
Bψ

B + μψ+A exp iθ, (3.217)

where η, μ, and θ are arbitrary real numbers, connected by the equation

η2 + μ2 = 1. (3.218)

It is not difficult to verify that if χ are the components of an arbitrary spinor of
the first-rank in the space E1

4 , then the spinor of the first-rank, determined by the
contravariant components

ψA = χA + iηγ 5A
BχB + μχ+A exp iθ,

satisfies Eq. (3.217) if coefficients η and μ satisfy Eq. (3.218). Thus, Eq. (3.217) is
solvable with respect to ψ .

Since Eq. (3.217) is invariant under transformations of the restricted Lorentz
group, it defines in the space of spinors some subspace that is invariant with respect
to this group.
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In spinbasis
∗
εA, in which the components of spintensors γi and β are defined by

matrices (3.81) and (3.82), Eqs. (3.217) are written as follows

(1 − η)ψ1 = −μψ̇4 exp iθ,

(1 − η)ψ2 = μψ̇3 exp iθ,

(1 + η)ψ3 = μψ̇2 exp iθ,

(1 + η)ψ4 = −μψ̇1 exp iθ.

From this it follows that the subspace under consideration is possible to determine
in notations of two-component spinors by the following equation

η̇Ȧ = HξA. (3.219)

Here ξA and ηȦ determine the two-component spinors with a fixed relative sign,
corresponding to the spinor ψ by formulas (3.89); H is the coefficient, connected
with numbers η, μ, and θ in formula (3.217) by the relation

H = 1 − η

μ
exp(−iθ).

The complex tensors C and the real tensors D, corresponding to the spinors from
subspace (3.217), are connected by the following relations

Si = −ηj i , Cs = iμjs exp iθ, Ω = N = 0,

μMjm = −i

(
Cjm − i

2
ηεjmksCks

)
exp(−iθ),

μCjm = i

(
Mjm + i

2
ηεjmksMks

)
exp iθ. (3.220)

Let us get, for example, the first equation in (3.220). For this purpose we replace
the spinor components ψA in definition (3.59) of the vector components Si by
formula (3.217):

Si = − ∗
γ i

ABψ
+AψB = −iη

∗
γ i
ABγ 5B

Cψ
+AψC − μ

∗
γ i

ABψ
+Aψ+B exp iθ.

(3.221)

Since the components of the spintensor
∗
γ i

AB are antisymmetric in the indices
A, B, the second term in the right-hand side of formula (3.221) is equal to zero;

replacing the product of matrices
∗
γ iγ 5 in (3.221) according to relations (3.11) and

taking into account definition (3.57) for the components of the vector j i , we find

Si = iηγ i
ACψ

+AψC = −ηj i.
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In a similar way, one obtains the other equations in (3.220). It is not
difficult to obtain all relations (3.220) using also relation (3.219) and
definitions (3.111), (3.112) for the tensors C and D.

In particular, it follows from Eqs. (3.220)

(
Cj e−iθ)˙= −Cje−iθ i. e. Re

(
Cje−iθ ) = 0.

Subspace (3.217) for η = 0 and μ = 1 is defined by the equation

ψA = ψ+A exp iθ. (3.222)

In the spinbasis, in which matrices γ i and β are defined by equalities (3.28)
and (3.29), Eq. (3.222) is written in the form

Im

[
ψA exp

(
− i

2
θ

)]
= 0.

In particular, for θ = 0 the spinor components in this spinbasis are real. Therefore
the spinor determined by a components ψA satisfying equations ψ+A = ψA in
arbitrary spinbasis is called the real spinor (or the Majorana spinor).

Equations (3.220) for spinors from subspace (3.222) pass into the following
equations:

Ω = N = Si = 0,

Cm = ijm exp iθ, Cmn = iMmn exp iθ.

Thus, tensors C and D determined by the spinors from subspace (3.222), have
the special form

C = {j i,Mij }i exp iθ,

D = {0, j i,Mij , 0, 0}.

The algebraic equations (3.52), (3.53), (3.60), and (3.62) connecting the tensor
components C and D, in this case pass into the equations

jij
i = 0, MijM

ij = 0, εijksM
ijMks = 0,

jiM
ij = 0, εijksjiMjk = 0, j ijn = Mi

jM
nj . (3.223)

The last equation in (3.223) and the condition j4 � 0 completely determine the
vector components j i in terms of the vector components Mij . Therefore spinors
from subspace (3.222) are completely defined by the real invariant θ and the real
antisymmetric tensor of the second rank with zero invariants

MijM
ij = 0, εijksM

ijMks = 0. (3.224)
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The real spinors in E1
4 are completely defined only by the antisymmetric tensor

of the second rank with components Mij , which satisfy the invariant algebraic
equations (3.224).

For μ = 0, η = ±1 Eq. (3.217) are written in the form

ψ = iγ 5ψ or ψ = −iγ 5ψ

and define the subspaces of semispinors. The tensors C and D for semispinors have
the form

C = {0, Cij }, Cij = ± i

2
εijksC

ks,

D = {0, j i, 0,∓j i, 0}, (3.225)

while the components of tensors j i and Cij satisfy the equations

jij
i = 0, jiC

ij = 0,

2j ij s = Ci
mĊsm.

Subspaces of semispinors are considered in detail in Sect. 3.3 of this chapter.
Considering the compatibility conditions for equations of a general form that are

linear with respect to ψ and ψ+ and invariant under the restricted Lorentz group

αψA + ηγ 5A
BψB + μψ+A + �γ 5A

Bψ+B = 0, (3.226)

one can show that the subspace of spinors defined by Eqs. (3.217) is the most general
subspace of form (3.226) invariant under the restricted Lorentz group. In particular,
invariant subspaces determined by the equations

ψA = aψ+A + ibγ 5A
Bψ+B,

ȧa − ḃb = 1, ȧb + aḃ = 0,

or by the equations

ψA = iγ 5A
B

(
ηψB + bψ+B

)
,

η̇η − ḃb = 1, η̇ = η,

are identical to the invariant subspace determined by Eqs. (3.217) and (3.218).
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3.8 Spinors in Pseudo-Euclidean Space E3
4

In the pseudo-Euclidean space of the index three E3
4 (with the metric signature

(−,−,−,+)) the Dirac matrices γj satisfy the equation

γiγj + γjγi = 2gij I, (3.227)

in which the components of the metric tensor gij calculated in an orthonormal basis
Эi of the space E3

4, are defined by the matrix

gij =

∥
∥
∥
∥∥
∥
∥
∥

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

∥
∥
∥
∥∥
∥
∥
∥

. (3.228)

Definition (3.12) of the metric spinor E does not depend on the metric signature
of the pseudo-Euclidean space. The invariant spinor of the second rank β = ‖βḂA‖
in the space E3

4 is defined by the equations

γ̇ T
i = βγiβ

−1, β̇T = β, (3.229)

which differ from Eqs. (3.17) determining the spinor β in the space E1
4. Due to

definitions (3.229) also the equations are fulfilled

(
βγi

)˙= (
βγi

)T
,

(
βγij

)˙= −(βγij
)T

,

(
β

∗
γ i

)˙= −(β ∗
γ i

)T
,

(
βγ 5)˙= (

βγ 5)T .

The invariant spinor of the second rank � = E−1βT = ‖�B
Ȧ‖ in the space E3

4
satisfies the equations

��̇ = I,

γ̇ i = −�−1γi�,

( ∗
γ i

)˙= −�−1 ∗
γ i�,

γ̇ ij = −�−1γij�,

(
γ 5)˙= −�−1γ 5�,

(3.230)

which also differ from the corresponding Eqs. (3.20) in the space E1
4 .

It is easy to see that if γ ′
j are the Dirac matrices in the space E1

4, satisfying
Eqs. (3.227) with components of the metric tensor gij = diag( 1, 1, 1,−1), then
the matrices γj = −iγ ′

j satisfy Eq. (3.227) with components of the metric tensor

gij = diag(−1,−1,−1, 1) of the space E3
4. If to the Dirac matrices γ ′

j in the space

E1
4 there correspond the invariant spinors β and � satisfying Eqs. (3.17)–(3.20),
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then the same matrices β, � satisfy Eqs. (3.229)–(3.230) in which γj = −iγ ′
j . Thus,

if between the Dirac matrices in spaces E1
4 and E3

4 the correspondence γj → −iγj
is established, then the components of the invariant spinors β and � in these spaces
are defined by identical matrices.

Equations (3.10) and (3.11) and all identities with the γ -matrices in the appendix
C in the spaces E1

4 and E3
4 are written identically (of course, with the corresponding

metric tensor in these relations). The proof of these identities and all relations given
below in the space E3

4 does not differ from the corresponding proofs in the space
E1

4.
The complex tensors C = {CiЭi , C

ijЭiЭj }, defined by the spinor of the first-
rank ψ in the space E3

4 one can define by the components

Ci = −iγ i
BAψ

BψA = −iψT Eγ iψ,

Cij = −iγ ij
BAψ

BψA = −iψT Eγ ijψ.

In this case an expression of the components of the second rank spinor ψBA =
ψBψA in terms of the components of tensors Ci,Cij has the form

ψBA = 1

4

(
−iCiγ BA

i + i

2
Cij γ BA

ij

)
.

The algebraic equations (3.52) and (3.53) connecting tensors C in the space E1
4 ,

do not change in a transition to the space E3
4 .

Let us define in the pseudo-Euclidean space E3
4 the real tensors components D =

{Ω, j i,Mij , Si ,N} by the relations

Ω = −eABψ
+AψB = ψ+ψ,

j i = −γ i
ABψ

+AψB = ψ+γ iψ,

Mij = iγ ij

ABψ
+AψB = −iψ+γ ijψ,

Si = i
∗
γ i

ABψ
+AψB = −iψ+ ∗

γ iψ,

N = −γ 5
ABψ

+AψB = ψ+γ 5ψ.

Here ψ+ = ψ̇T β is a row of the components of the conjugate spinor. In this case
for the components of the second rank spinor ψḂA = ψ̇BψA we have

‖ψḂA‖T = 1

4

(
ΩI + j sγs − i

2
Mjsγjs − iSi ∗

γ i + Nγ 5
)
β−1.
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The algebraic equations connecting the real tensors D in the space E3
4 take the

form

a. jij
i = Ω2 + N2,

b. SiS
i = −Ω2 − N2,

c. Sij
i = 0,

d.
1

2
MijM

ij = Ω2 − N2,

e.
1

4
εijksM

ijMks = 2ΩN,

f. Ωji = −1

2
εijksSjMks,

g. Nj i = SjM
ij ,

h. ΩSi = −1

2
εijksj

jMks,

i. NSi = jnMin,

j. j ij j = SiSj − Mi
sM

js + Ω2gij ,

k. ΩMij + 1

2
NεijksM

ks = −εijksj
kSs,

l. MijMks =
(
Ω2 + N2

) (
gikgjs − gisgjk

)
− 1

4
εijpqεksmnMpqMmn

− gik
(
j sj j − SsSj

)
+ gjk

(
j sj i − SsSi

)
+ gis

(
jj jk − SjSk

)

− gjs
(
j ij k − SiSk

)
,

m. Mi
jM

sj − 1

4
gisMjqM

jq = 1

2
gis

(
Ω2 + N2)− j ij s + SiSs . (3.231)

The equations (c), (d), (e), (k) in (3.231) in the transition from the space E1
4 to the

space E3
4 remain unchanged.

The orthonormal proper basis ĕa = {πi, ξ i , σ i , ui} of the spinor field ψ in the
space E3

4 is defined by the relations

ρπi = ImCi = −1

2
γ i
AB

(
ψAψB + ψ+Aψ+B

)
,

ρξ i = Re Ci = − i

2
γ i
AB

(
ψAψB − ψ+Aψ+B

)
,

ρσ i = i
∗
γ i

ABψ
+AψB, ρui = −γ i

ABψ
+AψB,
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in which ρ = √
Ω2 + N2.

If the matrices γj in the space E3
4 differ from matrices (3.24) by a factor −i and

the metric spinor E is determined by matrix (3.25), then the spinor components in
the proper basis ĕa are defined by the invariants Ω , N by formulas (3.144).

The contravariant components of vectors of Ca , ja , Sa and tensors Mab, Cab in
the proper basis ĕa are defined by equalities (3.140) and (3.141).

The Ricci rotation coefficients Δ̆s,ij corresponding to proper bases ĕa in the
space E3

4 are defined by the relation

Δ̆s,ij = 1

2

(− πi∂sπj + πj ∂sπi − ξi∂sξj + ξj ∂sξi

− σi∂sσj + σj ∂sσi + ui∂suj − uj∂sui

)
. (3.232)

For the partial derivatives ∂iψ in the space E3
4 are valid relation (3.203), in which

the Ricci rotation coefficients are defined by formulas (3.232), and the matrices γ i

are defined by Eqs. (3.227) and (3.228).



Chapter 4
Spinors in Three-Dimensional Euclidean
Spaces

4.1 Spinor Representation of the Orthogonal Transformation
Group of the Three-Dimensional Complex Euclidean
Space

4.1.1 Algebra of γ -Matrices

For the three-dimensional complex Euclidean vector space E+
3 the dimension of the

corresponding spinor space is equal to 2, while the components of invariant spin-

tensors
◦
γ α = ‖ ◦

γ B
αA‖ (α = 1, 2, 3; A, B = 1, 2) are represented by two-dimensional

matrices. By definition, the matrix
◦
γ 3 expresses in terms of the matrix product

◦
γ 1

and
◦
γ 2 as follows

◦
γ 3 = −i

◦
γ 1

◦
γ 2. (4.1)

The traces of the matrices
◦
γ satisfy the following equalities

tr
◦
γ α = 0, tr

( ◦
γ α

◦
γ β

) = 2δαβ,

Relations (1.15) for the three-dimensional space E+
3 are written as

◦
γ α

◦
γ β = ◦

γ αβ + δαβI,

◦
γ α

◦
γ μν = ◦

γ αμν + δαμ
◦
γ ν − δαν

◦
γ μ,

◦
γ μν

◦
γ α = ◦

γ αμν − δαμ
◦
γ ν + δαν

◦
γ μ. (4.2)
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Here the matrices of spintensor components
◦
γ μν ,

◦
γ αμν are defined by the relations

◦
γ μν = ◦

γ [μ
◦
γ ν],

◦
γ αμν = ◦

γ [α
◦
γ μ

◦
γ ν]. (4.3)

In the three-dimensional space E+
3 the matrices

◦
γ α ,

◦
γ μν , and

◦
γ αμν directly by virtue

of definitions (4.1), (4.3) satisfy the equalities

◦
γ μν = iεμνα

◦
γ α,

◦
γ αμν = iεαμνI,

◦
γ α = − i

2
εαμν ◦

γ μν, (4.4)

where εαμν are the components of the three-dimensional antisymmetric Levi-Civita
pseudotensor:

εαμν = 1, if substitution

(
α μ ν

1 2 3

)
is even,

εαμν = −1, if substitution

(
α μ ν

1 2 3

)
is odd,

εαμν = 0, if among indices α, μ, ν at least two coincide

The components εαβλ by virtue of this definition satisfy the identities

εαβλε
μνρ = det

∥
∥
∥
∥
∥∥
∥

δ
μ
α δ

μ
β δ

μ
λ

δνα δνβ δνλ
δ
ρ
α δ

ρ
β δ

ρ
λ

∥
∥
∥
∥
∥∥
∥
,

εαβλε
μνλ = δμα δ

ν
β − δναδ

μ
β ,

εαβλε
μβλ = 2δμα , εαβλε

αβλ = 6.

Equations (4.2) by means of equalities (4.4) can be written as

◦
γ α

◦
γ β = iεαβμ

◦
γ μ + δαβI,

◦
γ α

◦
γ μν = iεαμνI + δαμ

◦
γ ν − δαν

◦
γ μ,

◦
γ μν

◦
γ α = iεαμνI − δαμ

◦
γ ν + δαν

◦
γ μ.

If matrix
◦
γ 1 is symmetric, while

◦
γ 2 is antisymmetric

◦
γ T

1 = ◦
γ 1,

◦
γ T

2 = − ◦
γ 2, (4.5)
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then the metric spinor E satisfying the equation

◦
γ T

α = −E
◦
γ αE

−1, (4.6)

can be determined by the equality

E = ‖eBA‖ = i
◦
γ 2. (4.7)

It is seen from definitions (4.5) and (4.7) that the components eBA of the metric
spinor E are antisymmetric, while the components of the spintensor

◦
γ αAB are

symmetric with respect to the indices A, B:

eAB = −eBA,
◦
γ αAB = ◦

γ αBA. (4.8)

In the various calculations it is often necessary to use also the following relations

with the matrices
◦
γ α and E:

2eDEeBA = eDAeBE + ◦
γ α

DA

◦
γ αBE,

2
◦
γ αDEeBA = eDA

◦
γ αBE + ◦

γ αDAeBE − iεαβη
◦
γ

β
DA

◦
γ

η
BE,

2eDE
◦
γ αBA = eDA

◦
γ αBE + ◦

γ αDAeBE + iεαβη
◦
γ

β
DA

◦
γ

η
BE,

2
◦
γ α

DE

◦
γ

β
BA = δαβ

(
eDAeBE − ◦

γ
η
DA

◦
γ ηBE

)+ ◦
γ α

DA

◦
γ

β
BE + ◦

γ
β
DA

◦
γ α

BE

+ iεαβη
( ◦
γ ηDAeBE − eDA

◦
γ ηBE

)
. (4.9)

The first relation in (4.9) is the Pauli identity (see (1.19)) written for the two-

dimensional matrices
◦
γ α . The remaining relations in (4.9) are obtained from the first

one by contracting with components of spintensors
◦
γ α . We note also the following

relations, which are a corollary of identities (4.9):

◦
γ αDE

◦
γ α

BA − eDEeBA = −( ◦
γ αDA

◦
γ α

BE − eDAeBE

)
,

eDE
◦
γ αBA − ◦

γ αDEeBA − iεαβλ
◦
γ

β

DE

◦
γ λ

BA

= −(eDA
◦
γ αBE − ◦

γ αDAeBE − iεαβλ
◦
γ

β
DA

◦
γ λ

BE

)
.

The matrices
◦
γ α can be determined by the equalities1

◦
γ 1 = σ1 =

∥
∥
∥
∥

0 1
1 0

∥
∥
∥
∥ ,

◦
γ 2 = σ2 =

∥
∥
∥
∥

0 −i
i 0

∥
∥
∥
∥ ,

◦
γ 3 = σ3 =

∥
∥
∥
∥

1 0
0 −1

∥
∥
∥
∥ . (4.10)

1Matrices (4.10) are called the Pauli matrices and are usually designated by σα .
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If
◦
γ α = σα , then components of the metric spinor E can be determined by the

matrix

E = ‖eBA‖ =
∥
∥∥
∥

0 1
−1 0

∥
∥∥
∥ . (4.11)

4.1.2 Spinors in the Three-Dimensional Complex Euclidean
Space E+

3

Let Эα (α = 1, 2, 3) be an orthonormal basis in the complex Euclidean space E+
3 .

The spinor representation of the complex orthogonal group SO+
3 of transformations

Э′
α = lβαЭβ (4.12)

is determined in the space E+
3 by the group of the pairs {±S}, (i.e., by the factor

group S/(±I)), satisfying the equations

lβα
◦
γ β = S−1 ◦

γ αS, ST ES = E. (4.13)

The Greek indices α, β in Eqs. (4.13) take the values 1, 2, 3.
The invariant geometric object of the form ψ = ±ψAεA, where the pairs of the

contravariant components ±ψA and spinbases ±{εA} are referred to an orthonormal
basis Эα and are transformed according to the formula

± ψ ′B = ±SB
Aψ

A, ±ε′
B = ±ZA

BεA, (4.14)

under orthogonal transformation (4.12) of the basis Эα, is called a spinor of the first
rank in the three-dimensional complex Euclidean space E+

3 . The quantities SB
A in

Eqs. (4.14) are the elements of the matrix S, determined by Eqs. (4.13), ZA
B are the

elements of the inverse matrix S−1.
The covariant components of a spinor ψB are defined with the aid of the metric

spinor E that is determined by Eq. (4.6):

ψB = eBAψ
A.

If the components of the metric spinor E are determined by equality (4.11), then
the covariant and contravariant components of a spinor are connected as follows
ψ1 = ψ2, ψ2 = −ψ1.
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4.1.3 Spinor Representation of the Orthogonal Transformation
Group of Bases of the Real Euclidean Space

The invariant spinor of the second rank β = ‖βḂA‖ in the three-dimensional real
vector Euclidean space E0

3 according to results of Sect. 1.8, Chap. 1, is determined
by the equations

( ◦
γ T

α

)˙= β
◦
γ αβ

−1, βT = β̇.

The matrices of the spintensor components β
◦
γ α in the space E0

3 are Hermitian
(
β

◦
γ α

)˙= (
β

◦
γ α

)T
.

If the matrices
◦
γ α are Hermitian, then the components of the invariant spinor

β = ‖βȦB‖ can be determined by the unit matrix

β = I =
∥
∥∥
∥

1 0
0 1

∥
∥∥
∥ .

In this case for the covariant and contravariant components of the conjugate
spinor we have

ψ+ = ‖ψ+
A ‖ = (ψ̇1, ψ̇2), ψ̄ = ‖ψ+A‖ =

∥
∥
∥
∥
−ψ̇2

ψ̇1

∥
∥
∥
∥ .

It is easy to see that for the components of the conjugate spinors, the equality is
fulfilled (ψ+A)+ = −ψA.

It is not difficult to calculate in an explicit form the matrix of the spinor transfor-
mation S, satisfying Eqs. (4.13) in which lβα determine a real proper orthogonal
transformation of bases Эα in the space E0

3 . As is known, an arbitrary three-
dimensional proper orthogonal transformation can be defined by the coefficients
lβα :

lβα =
∥
∥
∥∥
∥
∥

cosϕ2 cosϕ1 − cos θ sin ϕ2 sin ϕ1

cosϕ2 sinϕ1 + cos θ sinϕ2 cosϕ1

sin ϕ2 sin θ

− sinϕ2 cosϕ1 − cos θ cosϕ2 sinϕ1 sinϕ1 sin θ

− sin ϕ2 sinϕ1 + cos θ cosϕ2 cosϕ1 − cosϕ1 sin θ

cosϕ2 sin θ cos θ

∥
∥
∥∥
∥
∥
, (4.15)

where ϕ1, ϕ2, and θ are the Euler angles determining rotation from the basis Эα to
basis Э′

α = lβαЭβ in the space E0
3 . If the matrices E and

◦
γ α are determined by

equalities (4.10) and (4.11), then substituting in Eqs. (4.13) coefficients lβα , defined
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according to (4.15), we find an expression for the transformation S of the spinor
components

S =
∥
∥
∥∥
∥

cos θ
2 e

i
2 (ϕ1+ϕ2) i sin θ

2 e− i
2 (ϕ1−ϕ2)

i sin θ
2 e

i
2 (ϕ1−ϕ2) cos θ

2 e− i
2 (ϕ1+ϕ2)

∥
∥
∥∥
∥
. (4.16)

The matrix S, determined by equality (4.16), is unitary and unimodular

ṠT S = I, detS = 1. (4.17)

One can give another expression for the spinor transformation S. As is
well known, the arbitrary proper orthogonal transformation (4.12) in the three-
dimensional Euclidean space can be realized by rotation on some angle ϕ around of
a fixed axis n. Let nα be components of a unit vector (nαn

α = 1), directed along the
axis n. Then the coefficients lβα of the arbitrary proper orthogonal transformation
can be represented as

lβα = δβα cosϕ + nβnα(1 − cosϕ) − εαβλnλ sin ϕ, det ‖lβα‖ = +1. (4.18)

The vector with components nα is an eigenvector of an orthogonal matrix defined
by the components of (4.18)

lβαnβ = nα.

It is not difficult to obtain formula (4.18) using the Lagrange–Sylvester formula
for the tensor function L = ‖lβα‖ = exp(ϕN), where N is the antisymmetric matrix
N = ‖εαβλnλ‖.

It is obvious that a pair nα , ϕ and a pair −nα, −ϕ determine the same orthogonal
transformation. If the orthogonal matrix ‖lβα‖ is given, then the angle of rotation ϕ

and the components of the unit vector nα are determined as follows

cosϕ = 1

2
(lαα − 1), nα = 1

2 sinϕ
εαβλl

βλ.

Using Eqs. (4.13) in which matrices E and
◦
γ α are determined by equalities (4.10)

and (4.11), it is possible to calculate the matrix of the spinor transformation S, which
corresponds to the proper orthogonal transformation (4.18):

S = I cos
ϕ

2
− inασα sin

ϕ

2
≡ exp

(
− i

2
ϕnασα

)
.
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4.2 Tensor Representation of Spinors
in the Three-Dimensional Euclidean Spaces

4.2.1 Tensor Representation of Spinors
in the Three-Dimensional Complex Euclidean Space

From the symmetry properties (4.8) it follows that complex tensors C, determined
by a spinor of the first rank ψ in the three-dimensional complex Euclidean space
E+

3 , contain only a complex vector C = CαЭα with components Cα determined by
the equality

Cα = ◦
γ α

ABψAψB = ψT E
◦
γ αψ. (4.19)

Contracting the first relation in (4.9) with the product of spinor components
ψAψBψDψE with respect to the indices A, B, D, E, we find that the components
of the vector Cα by virtue of definition (4.19) satisfy the equation

CαC
α = 0. (4.20)

Thus, the complex vector determined by the components Cα is isotropic.
Components of a spinor ψA are expressed in terms of the components of the

vector Cα according to the formula

ψA = ψBAηB

±√ψCDηCηD

, ψBA = −1

2
Cα ◦

γ BA
α . (4.21)

Here ηC (C = 1, 2) are arbitrary complex numbers, satisfying the condition

ψCDηCηD �= 0; the components of spintensors
◦
γ BA

α are determined by the relation
◦
γ BA

α = eAC ◦
γ B

αC .
The second formula in (4.21) in matrix notations has the form

‖ψBA‖ = 1

2
Cα ◦

γ αE
−1. (4.22)

By virtue of identity (4.20), the quantities ψA, determined by the first formula
in (4.21), are independent of the choice of numbers ηB .

Thus, the following theorem is valid.

Theorem The first-rank spinor ψ in the three-dimensional complex Euclidean
space E+

3 with components ±ψA, defined up to a common sign, is equivalent to an
isotropic complex vector C. The one-to-one relationship between components of the
spinor ±ψA and those of the vector Cα , invariant under orthogonal transformations
of the basis Эα , is performed by relations (4.19) and (4.21).
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If the components of invariant spintensors E and
◦
γ α are determined by matrices

(4.10) and (4.11), then formula (4.19) gives

C1 = ψ1ψ1 − ψ2ψ2,

C2 = i(ψ1ψ1 + ψ2ψ2),

C3 = −2ψ1ψ2.

In this case formula (4.22) takes the form

ψ11 = 1

2
(C1 − iC2), ψ22 = −1

2
(C1 + iC2),

ψ12 = ψ21 = −1

2
C3.

Tensors K, determined by two spinors of the first rank ψ and χ , in the three-
dimensional complex space E+

3 contain only a complex scalar K and a complex
vector with components Kα that are defined by the equalities

K = eABχAψB, Kα = ◦
γ α

ABχAψB, (4.23)

or, in matrix notations

K = χT Eψ, Kα = χT E
◦
γ αψ.

Contracting the first relation (4.9) with the product of spinor components
ψAχBχDψE , we find that by virtue of definitions (4.23) the components K and
Kα satisfy the equation

KαK
α = K2. (4.24)

For components of the second rank spinor χAψB it is possible to write

χAψB = −1

2

(
KeAB + Kα ◦

γ AB
α

)
. (4.25)

If the matrices E and
◦
γ α are determined by equalities (4.10) and (4.11), then for

the components K , Kα we have

K = χ1ψ2 − χ2ψ1, K1 = χ1ψ1 − χ2ψ2,

K2 = i(χ1ψ1 + χ2ψ2), K3 = −χ1ψ2 − χ2ψ1.
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Relations (4.25) in this case take the form

χ1ψ1 = 1

2
(K1 − iK2),

χ1ψ2 = 1

2
(K − K3),

χ2ψ2 = −1

2
(K1 + iK2),

χ2ψ1 = −1

2
(K + K3).

Contracting identities (4.9) with components ψBχAχDψE , we find that the
components K and Kα are expressed in terms of the components of the vector Cα

and C′α = ◦
γ α

BAχ
BχA = χT E

◦
γ αχ as follows

2K2 = −C′
αC

α, 2KKα = iεαβηC′
βCη,

2KαKβ = −δαβC′
ηC

η + C′αCβ + C′βCα.

The scalar K and the vectors with components Kα , Cα , C′α are connected also
by the equations

KαC
α = 0, KCα − iεαβηKβCη = 0,

KαC
′α = 0, KC′α + iεαβηKβC

′
η = 0,

C′αCβ = −K2δαβ + KαKβ − iεαβηKKη,

which are also obtained by contracting identities (4.9) with components of spinors
ψ and χ .

4.2.2 Tensor Representation of Spinors in the
Three-Dimensional Real Euclidean Space

For spinors in the three-dimensional real Euclidean space E0
3 , as well as in

the complex Euclidean space E+
3 , it is possible to determine the vector C by

formula (4.19). All relations between the vector C and the spinor of the first rank ψ ,
which are fulfilled in the space E+

3 , are fulfilled and in the space E0
3 . Together with

the complex vector C for spinors in the real space E0
3 it is possible to determine also

the real tensors D: the scalar ρ and the vector j = jαЭα . The components ρ and
jα in an orthonormal basis Эα of the space E0

3 can be determined by the equalities

ρ = −eABψ
+AψB, jα = − ◦

γ α
ABψ

+AψB. (4.26)

or, in a matrix form:

ρ = ψ+ψ, jα = ψ+ ◦
γ αψ. (4.27)
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Here ψ+ is a row of the covariant components of the conjugate first rank spinor ψ+
A .

By virtue of definitions (4.26) the components ρ and jα satisfy the equation

jαj
α = ρ2, (4.28)

which is obtained by contracting the first identity in (4.9) with components of the
spinor ψAψ+Bψ+DψE .

Further, we will also use the relations

ρψ = jασαψ, jαψ = ρσαψ − iεαβηjβσηψ, (4.29)

which are obtained by contracting identities (4.9) with components of the spinor
ψ+DψEψA with respect to the indices A, D, E.

The components of a spinor ψA are determined by the scalar ρ and the
components of the vector jα that satisfy Eq. (4.28), up to phase exp iϕ, where ϕ

is an arbitrary real number

ψA = ψḂA

√
ψḂB

exp(iϕ), ψḂA = 1

2

(
ρβAḂ + jα ◦

γ AḂ
α

)
. (4.30)

The second formula in (4.30) in matrix notations can be written as follows

‖ψḂA‖T = 1

2

(
ρI + jα ◦

γ α

)
β−1. (4.31)

If the components of invariant spintensors E,
◦
γ α are determined by matri-

ces (4.10), (4.11), and β = I , then the scalar ρ and the vector components jα

according to definitions (4.26) are expressed in terms of the spinor components ψ1,
ψ2 and the complex conjugate components ψ̇1, ψ̇2 as follows

ρ = ψ̇1ψ1 + ψ̇2ψ2,

j1 = ψ̇1ψ2 + ψ̇2ψ1, (4.32)

j2 = i(ψ̇2ψ1 − ψ̇1ψ2),

j3 = ψ̇1ψ1 − ψ̇2ψ2.

Formula (4.31) determining the components of a spinor of the second rank ψḂA

in terms of components ρ, jα , in this case gives

ψ 1̇1 = 1

2
(ρ + j3), ψ 1̇2 = 1

2
(j1 + ij2),

ψ 2̇2 = 1

2
(ρ − j3), ψ 2̇1 = 1

2
(j1 − ij2).
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From definition (4.32) it follows that for any nonzero spinor the inequality is
fulfilled

ρ = ψ̇1ψ1 + ψ̇2ψ2 > 0. (4.33)

The scalar ρ and the vector components jα are completely determined in terms
of components of the complex vector Cα by the condition ρ > 0 and the equations

2ρ2 = ĊαC
α, 2ρjα = −iεαβηĊβCη,

2jαjβ = δαβĊηC
η − ĊαCβ − ĊβCα. (4.34)

Here Ċα is the complex conjugate components Cα defined in terms of the
contravariant components of the conjugate spinor ψ+A by the formula Ċα =
− ◦
γ αABψ

+Aψ+B .
The vectors with components jα and Cα defined by a spinor ψ are also connected

by the following equations

Cαj
α = 0, jαCβ − jβCα = −iεαβηρCη,

ρCα = iεαβηjβCη. (4.35)

It is possible to obtain Eqs. (4.34) and (4.35) by contracting identities (4.9) with
components of spinors ψAψ+Bψ+DψE , ψ+Aψ+BψDψE .

The real tensors D = {ρ, jαЭα}, defined by a spinor ψ and the real tensors
D′ = {ρ′, j ′αЭα}, defined by a spinor χ

ρ′ = −eABχ
+AχB, j ′α = − ◦

γ α
ABχ

+AχB,

one can express in terms of the tensors K:

2ρρ′ = KK̇ + KαK̇
α,

2ρj ′α = −KK̇α − KαK̇ + iεαβηKβK̇η,

2ρ′jα = KK̇α + KαK̇ + iεαβηKβK̇η,

2j ′βjα = δαβ
(− KK̇ + KλK̇

λ
)− KαK̇β − KβK̇α − iεαβη

(
KK̇η − KηK̇

)
.

(4.36)

The tensors D, D′, K are also connected by the equations

ρK = jαK
α, ρKα − jαK = iεαβηjβKη,

−jαKβ + jβKα = iεαβη
(
ρKη − jηK

)
,
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ρ′K = −j ′
αK

α, ρ′Kα + j ′αK = iεαβηj ′
βKη,

−j ′αKβ + j ′βKα = iεαβη
(
ρ′Kη + j ′

ηK
)
. (4.37)

Equations (4.36) and (4.37) are obtained by contracting identities (4.9) with
components of spinors χAχ+BψDψ+E and ψAχBψ+DψE .

The relations determining a spinor ψ in terms of tensors K , D′, C′, in the space
E0

3 are obtained by contraction of identities (4.9) with components χDχ+EψA and
χDχEψA:

ρ′ψB = −1

2

(
KeAB + Kα ◦

γ AB
α

)
χ+
A ,

j ′ηψB = 1

2

(
KηeAB + K

◦
γ ηAB − iKαε

ηαμ ◦
γ AB

μ

)
χ+
A ,

C′ηψB = 1

2

(− KηeAB − K
◦
γ ηAB + iKαε

ηαμ ◦
γ AB

μ

)
χA.

4.3 Proper Orthonormal Bases for a Spinor Field
in the Three-Dimensional Euclidean Spaces

4.3.1 The Proper Orthonormal Vector Basis Determined
by a First-Rank Spinor

Let ψ be a first-rank spinor in the three-dimensional real Euclidean space E0
3 ,

referred to an orthonormal basis Эα . Let us represent the complex components of
the vector Cα , determined by the spinor ψ according to formula (4.19), in the form
Cα = pα + iqα, where pα and qα determine two real vectors in the space E0

3:

pα = Re Cα = 1

2
◦
γ α

AB

(
ψAψB − ψ+Aψ+B

)
,

qα = ImCα = i

2
◦
γ α

AB

(
−ψAψB − ψ+Aψ+B

)
. (4.38)

Equations (4.20), (4.28), (4.34), and (4.35) imply that the three vectors with
components pα , qα and jα are mutually orthogonal and have the equal moduli

jαp
α = jαq

α = pαq
α = 0,

pαp
α = qαq

α = jαj
α = ρ2. (4.39)



4.3 Proper Orthonormal Bases for a Spinor Field 215

It is easy to obtain from Eqs. (4.34) and (4.35) that the components of the vectors
pα , qα, and jα are also connected by the relations

ρpλ = ελαβqαjβ,

ρqλ = ελαβjαpβ,

ρjλ = ελαβpαqβ. (4.40)

From the orthogonality conditions (4.39) it follows that for any nonzero spinor
of the first rank ψ the vectors with components

πα = 1

ρ
pα, ξα = 1

ρ
qα, nα = 1

ρ
jα (4.41)

form an orthonormal basis ĕa in the space E0
3:

ĕ1 = παЭα, ĕ2 = ξαЭα, ĕ3 = nαЭα, (4.42)

which we shall call the proper basis of the spinor ψ .
The scale factors connecting basis Эλ and ĕa:

ĕa = h̆λ
aЭλ, Эλ = h̆λ

a ĕa (4.43)

in accordance with (4.42) and (4.43), are determined as follows

‖h̆λ
a‖ = ‖h̆λ

a‖ =
∥
∥
∥
∥∥
∥

π1 ξ1 n1

π2 ξ2 n2

π3 ξ3 n3

∥
∥
∥
∥∥
∥

= 1

ρ

∥
∥
∥
∥∥
∥

p1 q1 j1

p2 q2 j2

p3 q3 j3

∥
∥
∥
∥∥
∥
. (4.44)

Thus, h̆λ
a = δλθ δabh̆θ

b.
From Eqs. (4.40) it follows

det ‖h̆λ
a‖ = det

∥
∥
∥
∥
∥∥

π1 ξ1 n1

π2 ξ2 n2

π3 ξ3 n3

∥
∥
∥
∥
∥∥

= 1.

Therefore a nonzero spinor of the first rank ψ in the three-dimensional real
Euclidean space E0

3 determines a rotation given by the proper orthogonal trans-
formation from the basis Эα to basis ĕa .

If matrices
◦
γ α and E are determined by equalities (4.10) and (4.11) then, using

formula (4.21), it is possible to calculate the contravariant components ψ̆ of a spinor
ψ in the proper basis ĕa :

ψ̆ = ±
∥∥
∥
∥

√
ρ

0

∥∥
∥
∥ . (4.45)
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Using definitions (4.41) and (4.38), it is not difficult to verify that both spinor
ψ and ηψ , where η is an arbitrary real non-zero number, correspond to the same
proper bases ĕa and, consequently, to the same scale factors h̆λ

a .

4.3.2 Orthogonal Transformations Group of the Proper Basis
of a Spinor Field

Let ψA be the contravariant components of a spinor of the first rank ψ in the three-
dimensional Euclidean space E0

3 , referred to an orthonormal vector basis Эα , α = 1,
2, 3. Let us consider a group of the gauge transformations of the spinor components

ψ ′A = α̇ψA + β̇ψ̄A,

ψ̄ ′A = −βψA + αψ̄A, (4.46)

where the generally complex coefficients α and β are connected by the relation

α̇α + β̇β = 1.

The invariant ρ of the spinor ψ , defined by equality (4.26), under transforma-
tion (4.46) does not vary:

ρ′ = −eABψ̄
′Aψ ′B = −eAB

(− βψA + αψ̄A
)(
α̇ψB + β̇ψ̄B

)

= −(α̇α + β̇β
)
eABψ̄AψB = ρ.

The similar calculations give that the vector components πα, ξα , and nα , deter-
mined by equalities (4.41), under the gauge transformation (4.46) are transformed
as follows

π ′λ = l11π
λ + l21ξ

λ + l31σ
λ,

ξ ′λ = l12π
λ + l22ξ

λ + l32σ
λ,

n′λ = l13π
λ + l23ξ

λ + l33σ
λ. (4.47)

Coefficients lba in these formulas are determined by the matrix

L =

∥
∥
∥∥
∥
∥
∥
∥
∥∥

1

2
(α2 + α̇2 − β2 − β̇2)

i

2
(α2 − α̇2 + β2 − β̇2) −αβ − α̇β̇

i

2
(α̇2 − α2 + β2 − β̇2)

1

2
(α2 + α̇2 + β2 + β̇2) i(αβ − α̇β̇)

α̇β + β̇α i(αβ̇ − α̇β) α̇α − β̇β

∥
∥
∥∥
∥
∥
∥
∥
∥∥

. (4.48)
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By means of the scale factors (4.44) formulas (4.47) can be written in the form

h̆′λ
a = lbah̆

λ
b. (4.49)

From this it follows that under the gauge transformation (4.46) the vectors ea of the
proper basis of a spinor ψ are subjected to the transformation

ĕ ′
a = lba ĕb. (4.50)

Since the bases ĕ′
a and ĕa are orthonormal, transformation (4.50) is orthogonal. The

orthogonality of the matrix ‖lba‖ follows also directly from definition (4.48).
Let us now consider a proper orthogonal transformation of the basis Эα of the

Euclidean space E3:

Э′
α = lβαЭβ, (4.51)

With accordance to definitions (4.16) and (4.17), the matrix S of the spinor
transformation ψ ′ = Sψ corresponding to the transformation (4.51), in the general
case can be represented as

S =
∥
∥
∥
∥

α β

−β̇ α̇

∥
∥
∥
∥ , α̇α + β̇β = 1. (4.52)

Substituting in definitions (4.41), (4.38), and (4.26) the spinor components ψ

by the formula ψ ′ = Sψ , where S is determined according to (4.52), for the
transformation of the vector components of the proper basis ĕa we find

π ′
α = lβαπβ, ξ ′

α = lβαξβ , n′
α = lβαnβ,

where coefficients lβα are determined in terms of α and β by matrix (4.48). This
transformation can be written by means of the scale factors (4.44) as follows

h̆′
λ
a = lβλh̆β

a. (4.53)

Thus, the matrix lβλ of the orthogonal transformation (4.53) of the proper
basis ĕa turns out to be the same as in Eq. (4.49), corresponding to the gauge
transformation (4.46) of the spinor ψ .
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4.3.3 The Angular Velocity Vector of Rotation of the Proper
Basis ĕa

Let us suppose that the components of the first-rank spinor ψ are given in an
orthonormal basis Эα of the space E0

3 as functions of some scalar parameter t .
Consider a vector determined in the basis Эα by the components

Ω̆α = i

ρ

[
ψ+ ◦

γ α d

dt
ψ −

(
d

dt
ψ+

)
◦
γ αψ

]
≡

≡ i

ρ

◦
γ α

BA

(
−ψ+B d

dt
ψA + ψA d

dt
ψ+B

)
, (4.54)

where the invariant ρ is determined by equality (4.27).
It is not difficult to see that by virtue of definition (4.54) is carried out the equality

ψ+DψEΩ̆α = i

ρ

◦
γ α
BA

[
−ψ+BψE d

dt

(
ψ+DψA

)
+ ψEψA d

dt

(
ψ+Dψ+B

)]
.

(4.55)

Contracting equality (4.55) with respect to indices D, E with components of the
metric spinor eDE , in view of the third identity in (4.9) we can express Ω̆α in terms
of the vector components pα , qα, and jα:

Ω̆α = 1

2ρ2 ε
αβη

(
pβ

d

dt
pη + qβ

d

dt
qη + jβ

d

dt
jη

)

or, in terms of the components of unit vectors (4.41):

Ω̆α = 1

2
εαβη

(
πβ

d

dt
πη + ξβ

d

dt
ξη + nβ

d

dt
nη

)
. (4.56)

From (4.56) it follows

d

dt
πα = εαβλΩ̆βπλ,

d

dt
ξα = εαβλΩ̆βξλ,

d

dt
nα = εαβλΩ̆βnλ. (4.57)

Equations (4.57) are fulfilled identically by virtue of the definition of the vector
components πα , ξα , nα , and Ω̆α.

If E0
3 is the physical three-dimensional space and t is absolute time, Eqs. (4.57)

imply that the vector with components Ω̆α determined by equality (4.54), is the
angular velocity vector of the rotation of the proper basis ĕa relative to the basis
Эα .
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4.3.4 Derivatives of Spinors with Respect to Time
in the Rotating Orthonormal Basis

Let Эλ be some fixed orthonormal basis in the physical three-dimensional Euclidean

space, while an orthonormal basis
◦
Эa rotates concerning the basis Эλ with an

angular velocity determined by the angular velocity vector
◦
Ω = ◦

ΩλЭλ = ◦
Ωa

◦
Эa .

Assuming that bases
◦
Эa and Эλ are connected by the equality

◦
Эa = ◦

hλ
aЭλ, (4.58)

where scale factors
◦
hλ

a determine an orthogonal matrix, we express components

of the angular velocity vector
◦
Ω in terms of the scale factors

◦
hλ

a . By virtue of the

definition of the vector
◦
Ω we have

d

dt

◦
Эa = ◦

Ω × ◦
Эa = ελμν

◦
Ωλ

◦
hμ

aЭν = −εabc
◦
Ωb

◦
Эc. (4.59)

Differentiating Eq. (4.58), we find

d

dt

◦
Эa = Эλ

d

dt

◦
hλ

a =
(
δβλ

◦
hβ

b

d

dt

◦
hλ

a

) ◦
Эb.

Using the orthogonality conditions of the scale factors
◦
hλ

a , the last equation can
be written also as

d

dt

◦
Эa = 1

2
δβλ

(◦
hβ

b
d

dt

◦
hλ

a − ◦
hβ

a
d

dt

◦
hλ

b

) ◦
Эb.

Comparing this equation with Eq. (4.59), for the components
◦
Ωa of the angular

velocity vector in the rotating basis
◦
Эa we obtain

◦
Ωa = −1

2
εabcδβλ

◦
hβ

b
d

dt

◦
hλ

c.

It is not difficult to find the following expression for the components
◦
Ωλ of the

angular velocity vector in the fixed basis Эλ in terms of the scale factors

◦
Ωλ = 1

2
ελμνδab

◦
hμ

a d

dt

◦
hν

b.
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Let us denote the spinbasis corresponding to the vector basis Эλ by the symbol

εA; the spinbasis, corresponding to the vector basis
◦
Эa , we denote by the symbol

◦
εA. A matrix S−1 = ‖ZB

A‖ connecting spinbases εA and
◦
εA:

◦
εA = ZB

AεB, (4.60)

according to (4.13) is determined by the equations

◦
hλ

a
◦
γ λ = S−1 ◦

γ aS, ST ES = E. (4.61)

Let ψ be an arbitrary first-rank spinor determined in the spinbasis εA by con-

travariant components ψA, while in the spinbasis
◦
εA by contravariant components

◦
ψA:

ψ = ±ψAεA = ± ◦
ψA ◦

εA.

We assume that the components ψA and
◦
ψA are given as functions of time t .

Let us find a connection between the derivative of a spinor ψ with respect to time
dψ/dt , calculated in the fixed basis Эλ and the derivative d ′ψ/dt , calculated in the

rotating basis
◦
Эa . By definition, the derivative of a spinor ψ with respect to time in

the rotating basis
◦
Эa is a spinor of the same rank with components d

◦
ψA/dt in the

spinbasis
◦
εA:

d ′ψ
dt

= ± ◦
εA

d
◦
ψA

dt
. (4.62)

According to the conditions we have

d

dt
Эλ = 0,

d

dt
εA = 0,

d ′

dt

◦
Эa = 0,

d ′

dt

◦
εA = 0.

Differentiating relations (4.61) and performing identical transformations, we
obtain the equations

(
S

d

dt
S−1

)T

E + E

(
S

d

dt
S−1

)
= 0,

(
S

d

dt
S−1

)
◦
γ a − ◦

γ a

(
S

d

dt
S−1

)
=
(
δβλ

◦
hβ

b
d

dt

◦
hλ

a

)
◦
γ b = εabc

◦
Ωc ◦

γ b,
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from which it follows

S
d

dt
S−1 = − i

2

◦
Ωa ◦

γ a. (4.63)

From Eq. (4.63) we obtain expressions for the derivatives of the matrices S and
S−1 with respect to time:

d

dt
S = i

2

◦
Ωa ◦

γ aS,
d

dt
S−1 = − i

2

◦
ΩaS−1 ◦

γ a. (4.64)

Differentiating Eq. (4.60), in view of equalities (4.64) we find

d

dt

◦
εA = εB

d

dt
ZB

A = ◦
εCS

C
B

d

dt
ZB

A = − i

2

◦
Ωa ◦

γ C
aA

◦
εC. (4.65)

Taking into account expression (4.65) for the derivative of
◦
εA and defini-

tion (4.62) for the derivative d ′ψ/dt , we obtain

d

dt
ψAεA = d

dt

◦
ψA ◦

εA = ◦
εA

d

dt

◦
ψA − i

2

◦
Ωa ◦

γ B
aA

◦
εB

◦
ψA

= d ′

dt

◦
ψA ◦

εA − i

2

◦
Ωa ◦

γ B
aA

◦
εB

◦
ψA.

Thus, derivatives d ′ψ/dt and dψ/dt are connected by the relation

d

dt
ψAεA =

(
δBA

d ′

dt
− i

2

◦
Ωa ◦

γ B
aA

) ◦
ψA ◦

εB. (4.66)

Direct verification shows that for the vectors pλЭλ, qλЭλ, and jλЭλ determined
by a spinor ψ , Eqs. (4.66) implies the usual relations for derivatives of vectors with
respect to time [62]

d

dt
pλЭλ =

(
d ′

dt

◦
pa + εabc

◦
Ωb

◦
pc

) ◦
Эa,

d

dt
qλЭλ =

(
d ′

dt

◦
qa + εabc

◦
Ωb

◦
qc

) ◦
Эa,

d

dt
jλЭλ =

(
d ′

dt

◦
ja + εabc

◦
Ωb

◦
jc

) ◦
Эa.
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4.3.5 The Ricci Rotation Coefficients for the Proper Bases

Let us consider in the three-dimensional real Euclidean point space G3 a field of
the first rank spinor ψ(xα), given by components ψA(xα) in a cartesian coordinate
system with the variables xα. The field of a spinor ψ(xα) determines in each point
of the space G3 the proper orthonormal bases ĕa(x

α), defined in terms of ψ by
formulas (4.42), (4.41), (4.38), and (4.19).

Consider the quantities Δ̆λ,αβ , determined by the field of a spinor ψ(xα) and
conjugate spinor ψ+(xα):

Δ̆λ,αβ = i

ρ
εαβη

◦
γ

η
BA

(
−ψ+B∂λψ

A + ψA∂λψ
+B
)
. (4.67)

From definition (4.67) it follows the obvious identity

ψ+DψEΔ̆λ,αβ = i

ρ
εαβη

◦
γ

η
BA

[
−ψ+BψE∂λ

(
ψ+DψA

)+ ψEψA∂λ
(
ψ+Dψ+B

)]
,

(4.68)

Contracting this equality with components of the metric spinor eDE with respect to
the indices D, E, taking into account the third identity in (4.9), we find

Δ̆λ,αβ = 1

2ρ2

(
pα∂λpβ − pβ∂λpα + qα∂λqβ − qβ∂λqα + jα∂λjβ − jβ∂λjα

)

or

Δ̆λ,αβ = 1

2

(
πα∂λπβ − πβ∂λπα + ξα∂λξβ − ξβ∂λξα + nα∂λnβ − nβ∂λnα

)
.

(4.69)

Using notations (4.44), one can write formula (4.69) as follows

Δ̆λ,αβ = 1

2
δbc
(
h̆α

b∂λh̆β
c − h̆β

b∂λh̆α
c
)
. (4.70)

Equations (4.70) are the definition of the Ricci rotation coefficients correspond-
ing to the system of the proper bases ĕa(x

λ). By means of the Ricci rotation
coefficients one can calculate the derivatives of the vectors of the proper basis

∂λĕa = (
h̆μ

ah̆
ν
bΔ̆λ,μν

)
ĕ b = Δ̆λ,abĕ

b. (4.71)

If we replace the vectors ĕa in Eqs. (4.71) in terms of vectors Эα by formulas (4.42),
then we obtain the equations connecting the derivatives ∂λπα , ∂λξα , ∂λnα and the
vector components πα, ξα , nα of the proper basis of the spinor field

∂λπα = −Δ̆λ,α
βπβ, ∂λξα = −Δ̆λ,α

βξβ ,

∂λnα = −Δ̆λ,α
βnβ. (4.72)
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Equations (4.72) are obtained also directly by contracting definition (4.69) with
components of the vectors πα , ξα , nα .

Instead of the Ricci rotation coefficients Δ̆λ,αβ it is convenient to use the dual
quantities Δ̆λα:

Δ̆λα = 1

2
εα

μνΔ̆λ,μν = i

ρ

[
ψ+ ◦

γ α∂λψ − (
∂λψ

+) ◦
γ αψ

]
. (4.73)

It is not difficult to see, that Δ̆λ,μν = εμναΔ̆λ
α .

4.4 The Expression of Derivatives of the Spinor Field
in Terms of Derivatives of Vector Fields

Let us obtain an expression for derivatives of a spinor field ψ(xα, t) in terms of
derivatives of the vectors of the proper basis ĕa and the spinor invariant ρ. Let the
first-rank spinor ψ in an orthonormal basis Эα of the real point Euclidean space
has the contravariant components ψA, while in the proper basis ĕa the same spinor
has the contravariant components ψ̆A, defined by relation (4.45). Differentiating
relation (4.45) with respect to variables xλ and t , we find

∂λψ̆ = 1

2
ψ̆ ∂λ lnρ,

∂

∂t
ψ̆ = 1

2
ψ̆

∂

∂t
ln ρ. (4.74)

The components of spinors ψ̆ and ψ are connected by the transformation

ψ̆ = Sψ. (4.75)

The transformation matrix S is determined by the equations (see (4.13))

h̆λ
aS

◦
γ λ = ◦

γ aS, ST ES = E, (4.76)

where the coefficients h̆λ
a are determined by matrix (4.44). Similarly to the

derivation of the corresponding formula in the space E1
4 for derivatives ∂S/∂t , ∂λS

using Eqs. (4.76) one can find

∂

∂t
S = i

2
Ω̆αS

◦
γ α, ∂λS = 1

4
Δ̆λ,αβS

◦
γ α ◦

γ β. (4.77)
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Here the quantities Δ̆λ,αβ and Ω̆α are determined in terms of derivatives of
the proper basis ĕa by relations (4.56) and (4.69). Bearing in mind formu-
las (4.74), (4.75), and (4.77) for derivatives ∂ψ/∂t and ∂λψ we find

∂

∂t
ψ = 1

2

(
I
∂

∂t
ln ρ − iΩ̆α ◦

γ α

)
ψ,

∂λψ = 1

2

(
I∂λ ln ρ − 1

2
Δ̆λ,αβ

◦
γ α ◦

γ β

)
ψ, (4.78)

where I is the unit two-dimensional matrix.
For the conjugate field ψ+ the equalities are valid

∂

∂t
ψ+ = 1

2
ψ+

(
I
∂

∂t
ln ρ + iΩ̆α ◦

γ α

)
,

∂λψ
+ = 1

2
ψ+

(
I∂λ ln ρ + 1

2
Δ̆λ,αβ

◦
γ α ◦

γ β

)
. (4.79)

The second equations in (4.78) and (4.79), taking into account definition (4.73) and
the first equality in (4.4), can be written in the form

∂λψ = 1

2

(
I∂λ lnρ − i

2
Δ̆λα

◦
γ α

)
ψ,

∂λψ
+ = 1

2
ψ+

(
I∂λ ln ρ + i

2
Δ̆λα

◦
γ α

)
.

We can give a simpler (though more formal) derivation of Eqs. (4.78). Let
us consider the identity obtained by contracting the fourth identity in (4.9) with
components of the metric tensor gαβ with respect to the indices α and β

2
◦
γ α

DE

◦
γ αBA = 3eDAeBE − ◦

γ α
DA

◦
γ αBE. (4.80)

The contraction of identity (4.80) with quantities ψ+DψA∂ψE/∂t with respect to
the indices D, A, E gives

2

(
◦
γ αDEψ+D ∂

∂t
ψE

)
◦
γ α

BAψ
A = −3ρ

∂

∂t
ψB + jα

◦
γ α

BE

∂

∂t
ψE. (4.81)
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Let us transform the left-hand side of Eq. (4.81). In view of definitions (4.26)
and (4.54) we have

2

(
◦
γ αDEψ+D ∂

∂t
ψE

)
◦
γ α

BAψ
A =

= ◦
γ αDE

[
ψ+D ∂

∂t
ψE − ψE ∂

∂t
ψ+D + ∂

∂t

(
ψ+DψE

)
]

◦
γ α

BAψ
A =

=
(

iρΩ̆α − ∂

∂t
jα

)
◦
γ α

BAψ
A. (4.82)

Using relation (4.82), one can write Eq. (4.81) as follows (in a matrix form)

iρΩ̆α ◦
γ αψ = −3ρ

∂

∂t
ψ + ∂

∂t

(
jα ◦

γ αψ
)
. (4.83)

Replacing the last term in Eq. (4.83) by formula (4.29), we find

iρΩ̆α ◦
γ αψ = −2ρ

∂

∂t
ψ + ψ

∂

∂t
ρ. (4.84)

Dividing identity (4.84) by 2ρ, we obtain the first relation in (4.78). The second
relation in (4.78) is obtained in a similar way.

The derivative of the spinor components can be expressed also in terms of the
complex vector components Cα = ρ(πα + iξα). For this purpose we contract
identity

ψA
(
ψBdψE + ψEdψB

)
= ψAd

(
ψBψE

)

with components σα
BAeDE with respect to the indices A, B, E. As a result, after

simple transformations taking into account the third identity in (4.9) we obtain

Cα
∂

∂t
ψ = i

2
εαβλσ

βψ
∂

∂t
Cλ. (4.85)

The contraction of relation (4.85) with complex conjugate components Ċα gives

∂

∂t
ψ = − i

4ρ2 εαβλσ
αψĊβ ∂

∂t
Cλ. (4.86)

Here it is taken into account that CαĊ
α = 2ρ2.

Formulas (4.78), (4.86) reduce the problem on the tensor formulation of differ-
ential spinor equations in three-dimensional space to simple algebraic operations.



Chapter 5
Tensor Forms of Differential Spinor
Equations

5.1 Some Relativistically Invariant Equations

Let us consider the four-dimensional pseudo-Euclidean Minkowski space with the
metric signature (+,+,+,−) referred to an Cartesian coordinate system with the
variables xi and holonomic vector basis Эi (i = 1, 2, 3, 4). The contravariant and
covariant components of the metric tensor of the Minkowski space calculated in the
coordinate system xi are defined by the matrix

gij = gij =

∥
∥
∥∥
∥
∥
∥
∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

∥
∥
∥∥
∥
∥
∥
∥

.

Consider the following differential equation which is written in the matrix form

Gj∂jψ + F(�A)ψ = 0. (5.1)

Here ψ is the column from n unknown functions; ∂j = ∂/∂xj . F(�A) and Gj are
the given quadratic generally complex matrices of the order n; matrix F(�A) can
be a function of the components of various tensors or spinors �A, which must be
set or be defined with the aid of the additional equations.

Consider an arbitrary Lorentz transformation of the variables of the Cartesian
coordinate system xi to variables yi also of the Cartesian coordinate system

yj = bj
ix

i, xj = lj iy
i . (5.2)

Matrices ‖lj i‖ and ‖bj
i‖ are mutual inverse ‖lj i‖ = ‖bj

i‖−1.
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Suppose that under the Lorentz transformation (5.2) the functions ψ = ψ(xi)

appearing in Eq. (5.1) are transformed as follows

ψ ′(yi) = Sψ(xi), (5.3)

where the set of transformations S corresponding to all Lorentz transforma-
tions (5.2), forms a group realizing some representation of the transformation
group (5.2), and transformations S do not depend on the variables of the coordinate
system xi .

Equation (5.1) is invariant under the Lorentz transformations (5.2), if Eq. (5.1)
retains its form in the coordinate system with the variables yi

Gj ∂

∂yj
ψ ′ + F(� ′A)ψ ′ = 0. (5.4)

Let us find conditions under which Eq. (5.1) is invariant under the Lorentz trans-
formations (5.2). Replacing in Eqs. (5.1) the functions ψ according to equality (5.3)
and the derivative ∂i by the formula

∂

∂xj
= bi

j

∂

∂yi
,

we write down Eq. (5.1) in the form

Gjbi
j

∂

∂yi

(
S−1ψ ′)+ F(�A)S−1ψ ′ = 0.

Multiplying this equation from the left by some nondegenerate matrix V , in
general case depending on transformation (5.3), we find

bi
jVGjS−1 ∂

∂yi
ψ ′ + VF(�A)S−1ψ ′ = 0. (5.5)

Comparing Eq. (5.5) with Eq. (5.4), we find that if the conditions are satisfied

VF(�A)S−1 = F(� ′A), bi
jVGjS−1 = Gi, (5.6)

then Eq. (5.5) coincide with Eq. (5.4). Thus, if there is the transformation V such
that equalities (5.6) are satisfied, then Eq. (5.1) are invariant under the Lorentz
transformations (5.2).

It is easy to show that the set of transformations {V } corresponding to all Lorentz
transformations (5.2), is a group realizing some representation of the Lorentz group.

If Eq. (5.1) is invariant under transformations of the subgroup L↑ of the Lorentz
group, then are said that Eq. (5.1) is relativistically invariant.
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For simplicity and having in mind the physical applications, we consider here a
case, when the matrix F in Eqs. (5.1) has the form

F = �I + i�jG
j + i

2
�sjG

js + ∗
�j

∗
Gj + ∗

�G5, (5.7)

where generally complex coefficients �, �j , �ij ,
∗
�j , and

∗
� form, respectively, the

field of the scalar, vector, antisymmetric tensor of the second rank, pseudo-vector

and pseudo-scalar in the Minkowski space. Matrices Gjs ,
∗
Gj , G5 are defined by the

equalities

G5 = − 1

24
εijksG

iGjGkGs,

Gjs = 1

2
(GjGs − GsGj),

∗
Gj = −1

6
εjsmnGsGmGn.

If the matrix F is determined by Eq. (5.7), then the first equation in (5.6) takes
the form

V

(
�I + i�jG

j + i

2
�sjG

js + ∗
�j

∗
Gj + ∗

�G5
)
S−1

= � ′I + i� ′
jG

j + i

2
� ′
sjG

js + ∗
� ′
j

∗
Gj + ∗

� ′G5.

Replacing here the components � by formulas of a tensor transformation

� = � ′, �j = bi
j�

′
i , �js = bj

ib
s
m� ′

im,

∗
�j = Δbi

j
∗
� ′
i ,

∗
� = Δ

∗
� ′,

(Δ = det ‖bj
i‖), we obtain the system of equations

V S−1 = I, bj
iVG iS−1 = Gj, (5.8)

bj
ib

s
mVGimS−1 = Gjs, Δ bj

iV
∗
GiS−1 = ∗

Gj , ΔVG5S−1 = G5.

The first equation (5.8) holds if in matrix (5.7) coefficient � is not equal to zero
� �= 0; in this case V = S. The second equation in (5.8) coincides with the second
equation in (5.6), and the last three equations in (5.8) as it is easy to see, are a
corollary of the second equation in (5.6).

Thus, the system of equations (5.8) at � �= 0 is reduced to the equations

V = S, bj
iSG

iS−1 = Gj. (5.9)
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If � = 0, then the equation V = S may not hold (for example, V �= S for the
Weyl equations for the two-component spinor).

Let us write Eqs. (5.9) for the small transformations (5.2). Up to first-order small
quantities we have

bj
i = δ

j
i − δεi

j , S = I + 1

2
Aij δεij . (5.10)

Here I is the unit matrix of the order n, δεij = −δεji are small parameters, δεj i =
gjsδεsi .

Inserting expressions (5.10) for bj
i and S into the second equation in (5.9), we

rewrite the conditions of invariancy of Eqs. (5.1) in the form (up to first-order small
quantities)

GiAjs − AjsG i − gijG s + gsiGj = 0. (5.11)

Further we shall consider only the case when the square matrices Gi in Eqs. (5.1)
are given and satisfy the equation

GiGj + GjGi = 2gij I. (5.12)

As it was already noted (Chap. 1, Sect. 1.1), the order of the square matrices
Gi satisfying Eq. (5.12) is equal to 4q , q � 1 is a positive integer. Consider the
case when the order of the matrices Gi is minimum and equal to 4. In this case
equations (5.11) determine the infinitesimal operators Aij up to an arbitrary unit
matrix

Aij = 1

4
(G iGj − GjGi) + aij I. (5.13)

Here aij are arbitrary numbers, I is the unit four-dimensional matrix. The matrices
Aij (for aij = 0), defined by formulas (5.13), are infinitesimal operators of the
spinor representation of the Lorentz group (see Eq. (3.44). Therefore, if the order of
matrices Gi is equal to 4, then Eq. (5.1) is relativistically invariant, if ψ is the four-
component spinor. This case in more details is considered in following sections.

If the order of the matrices Gi is greater than four, then a solution of Eqs. (5.11)
for infinitesimal operators Aij is essentially no unique, and there exist solutions
of these equations that define both the spinor representations and the tensor ones.
For example, if the order of matrices of Gi is equal to eight, then Eq. (5.1) is
relativistically invariant, if ψ is an object consisting of two four-component spinors.
An example of the relativistically invariant tensor equations which are written in the
form of the matrix equations (5.1) with the eight-dimensional matrices Gi satisfying
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Eqs. (5.12) are the equations

∂j
(
F ij + Fgij

)+ �j

(
F ij + Fgij

)− ∗
�j

(
1

2
εijksFks + ∗

Fgij

)
= 0,

∂j

(
1

2
εijksFks + ∗

Fgij

)
+ �j

(
1

2
εijksFks + ∗

Fgij

)
+ ∗

�j

(
F ij + Fgij

) = 0,

(5.14)

where F is a scalar, F ij are the components of a second rank antisymmetric tensor,
∗
F is a pseudo-scalar, εijks are the components of the Levi-Civita pseudotensor.

Indeed, Eqs. (5.14) are written in the form of the equations

Gj∂jψ + (
�jG

j + ∗
�j

∗
Gj

)
ψ = 0, (5.15)

if we take as ψ the column of the components F , F 12, F 31, F 23, F 14, F 24, F 34,
∗
F

and as Gi the real matrices

G 1 =

∥
∥∥
∥
∥
∥
∥
∥∥
∥
∥
∥
∥∥
∥
∥
∥

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

∥
∥∥
∥
∥
∥
∥
∥∥
∥
∥
∥
∥∥
∥
∥
∥

, G 2 =

∥
∥∥
∥
∥
∥
∥
∥∥
∥
∥
∥
∥∥
∥
∥
∥

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

∥
∥∥
∥
∥
∥
∥
∥∥
∥
∥
∥
∥∥
∥
∥
∥

,

G 3 =

∥
∥
∥
∥
∥∥
∥
∥
∥
∥∥
∥
∥
∥
∥
∥∥

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 0 0 −1
0 0 −1 0
0 −1 0 0

−1 0 0 0

∥
∥
∥
∥
∥∥
∥
∥
∥
∥∥
∥
∥
∥
∥
∥∥

, G 4 =

∥
∥
∥
∥
∥∥
∥
∥
∥
∥∥
∥
∥
∥
∥
∥∥

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

∥
∥
∥
∥
∥∥
∥
∥
∥
∥∥
∥
∥
∥
∥
∥∥

. (5.16)

Matrices (5.16) satisfy Eq. (5.12).

We note that if to put in Eqs. (5.14) �j = ∗
�j = F = ∗

F = 0, then Eqs. (5.14) are
written in the form of the Maxwell equations for a free electromagnetic field

∂jF
ij = 0, εijks∂jFks = 0.
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Thus, the Maxwell equations may be written as the matrix equations

Gj∂jψ = 0,

in which matrices Gi satisfying Eq. (5.12) are defined by equalities (5.16), while ψ

is the column of components 0, F 12, F 31, F 23, F 14, F 24, F 34, 0.

It is possible that Eqs. (5.14) are of physical interest and with F �= 0 and
∗
F �= 0.

Another example of the relativistically invariant tensor equations written in the
form of Eqs. (5.15) with the eight-dimensional matrices Gi satisfying Eq. (5.12), are
the equations

∂k
(− εijks

∗
Fs + gikF j − gjkF i

)+ �k

(− εijks
∗
Fs + gikF j − gjkF i

)

+ ∗
�k

(
gik

∗
Fj − gjk

∗
F i + εijksFs

) = 0,

∂iF
i + �iF

i + ∗
�i

∗
F i = 0, ∂i

∗
F i + �i

∗
F i − ∗

�iF
i = 0,

in which F i are the components of a four-dimensional vector,
∗
F i are the components

of a four-dimensional pseudo-vector. These equations can be written in the form of
the matrix equations (5.15), if we take as ψ the column of the components F 2, −F 1,
∗
F 4, F 3, − ∗

F 3, F 4,
∗
F 1, − ∗

F 2 and as Gi the real matrices (5.16).
System of the relativistically invariant tensor equations which are written in

the form (5.1) with the sixteen-dimensional matrices Gi satisfying Eqs. (5.12), is
considered in [82].

5.2 Spinor Differential Equations in the Minkowski Space

Let us consider in the Minkowski space the following differential equations

γ Bj

A∂jψ
A +

(
�δBA + i�jγ

Bj

A + i

2
�jsγ

Bjs

A + ∗
�j

∗
γ Bj

A + ∗
�γ 5B

A

)
ψA = 0

(5.17)

or, in the matrix form

γ j ∂jψ +
(
�I + i�jγ

j + i

2
�jsγ

js + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0. (5.18)

Here ψ = ψ(xi) is the field of a four-component spinor in the Minkowski space,
defined in the Cartesian coordinate system by four complex components ψA =
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ψA(xi); γ j = ‖γ Bj
A‖ are the four-dimensional Dirac matrices; I is the unit four-

dimensional matrix; the matrices γ sj ,
∗
γ j , γ 5 are defined by the equalities

γ js = γ [j γ s], ∗
γ j = −1

6
εjksmγkγsγm,

γ 5 = − 1

24
εijksγiγj γkγs.

The coefficients �, �j , �js ,
∗
�j , and

∗
� in Eqs. (5.17) may be arbitrary real

differentiable functions forming the fields of a scalar, a vector, an antisymmetric
second rank tensor, a pseudo-vector and a pseudo-scalar, respectively. The quantities

�, �j , �js ,
∗
�j , and

∗
� may be the given functions or must be defined by the additional

equations.

If � = const, �j = �js = ∗
�j = ∗

� = 0, then Eq. (5.17) is the Dirac equation
used in the relativistic theory of electron

γ j ∂jψ + mψ = 0, m = const . (5.19)

If
∗
�j = λSj , � = �j = �js = ∗

� = 0, where the components of the pseudo-
vector Sj are determined by equality (3.59), λ is a constant, then Eq. (5.17) is the
Heisenberg equation:

γ j ∂jψ + λSj ∗
γ jψ = 0, λ = const. (5.20)

This equation was used in the nonlinear theory of elementary particles [17, 39].
Equations (5.17) are used further in mechanics of the magnetizable spin fluids

(see Chap. 6).

Taking the complex conjugate of Eq. (5.18) and replacing matricesγ̇ j ,γ̇ js ,
( ∗
γ i

)
,̇

and γ̇ 5 by formulas (3.20), we get

�−1γ j�∂j ψ̇ + �−1
(
�I − i�j γ

j − i

2
�jsγ

js + ∗
�j

∗
γ j + ∗

�γ 5
)
�ψ̇ = 0.

(5.21)

Multiplying Eq. (5.21) from the left by � and taking into account definition (3.48)
of the contravariant components ψ̄ = �ψ̇ = ‖ψ+A‖, we write down Eq. (5.21) in
the form

γ j ∂j ψ̄ +
(
�I − i�j γ

j − i

2
�jsγ

js + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ̄ = 0.

Taking the Hermitian conjugate of Eq. (5.18) and replacing in result the matrices
γ̇ T

i , γ̇ T
ij , . . . by formulas (3.17), (3.18), we get the equation for the covariant
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components of the conjugate spinor

− ∂jψ
+γ j + ψ+

(
�I + i�jγ

j + i

2
�jsγ

js + ∗
�j

∗
γ j + ∗

�γ 5
)

= 0. (5.22)

Here ψ+ = ψ̇T β is the row of the covariant components of conjugate spinor ψ+
A .

Equation (5.18) can be written in the two-dimensional matrix notations with the
aid of the components of semispinors. For this purpose we multiply Eq. (5.18) by
the matrix iγ 5. Taking into account relation (3.11) we get

−iγ j ∂j (γ
5ψ)+

(
−i

∗
�I+i

∗
�jγ

j − 1

2
�jsγ

jsγ 5+�jγ
j γ 5+i�γ 5

)
ψ = 0. (5.23)

Adding and subtracting Eqs. (5.18) and (5.23), we find

γ j ∂j
[(
I − iγ 5)ψ

]+
[
(� − i

∗
�)(I + iγ 5) + i

2
�jsγ

js(I + iγ 5)

+ i(�j + ∗
�j )γ

j (I − iγ 5)

]
ψ = 0,

γ j ∂j
[(
I + iγ 5)ψ

]+
[
(� + i

∗
�)(I − iγ 5) + i

2
�jsγ

js(I − iγ 5) (5.24)

+ i(�j − ∗
�j )γ

j (I + iγ 5)

]
ψ = 0.

Determining the components of semispinors ψ(I) and ψ(II) by the formulas

ψ(I) = 1

2
(I + iγ 5)ψ, ψ(II ) = 1

2
(I − iγ 5)ψ,

we can write down Eq. (5.24) in the form

γ j ∂jψ(I) + i(�j − ∗
�j )γ

jψ(I) + (� + i
∗
�)ψ(II) + i

2
�jsγ

jsψ(II ) = 0,

γ j ∂jψ(II ) + i(�j + ∗
�j )γ

jψ(II ) + (� − i
∗
�)ψ(I) + i

2
�jsγ

jsψ(I) = 0. (5.25)

If the components of spintensors γ j are determined by matrices (3.24), then
Eq. (5.25) can be written as follows

1

c

∂

∂t
ξ + σα∂αξ + i

(
� + i

∗
�
)
η + i

[(
�α − ∗

�α

)
σα + (

�4 − ∗
�4
)
I
]
ξ

+
(
�4α − i

2
εαλθ�λθ

)
σαη = 0,
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1

c

∂

∂t
η − σα∂αη + i

(
� − i

∗
�
)
ξ + i

[− (
�α + ∗

�α

)
σα + (

�4 + ∗
�4
)
I
]
η

−
(
�4α + i

2
εαλθ�λθ

)
σαξ = 0. (5.26)

Here εαλθ are the components of the Levi-Civita three-dimensional pseudoten-

sor; ξ =
∥
∥
∥
∥
ξ1

ξ2

∥
∥
∥
∥ , η =

∥
∥
∥
∥
η1̇
η2̇

∥
∥
∥
∥ are the two-component spinors corresponding to

semispinors ψ(I), ψ(II):

ψ(I) =

∥∥
∥
∥
∥
∥
∥∥

ξ1

ξ2

0
0

∥∥
∥
∥
∥
∥
∥∥

, ψ(II ) =

∥∥
∥
∥
∥
∥
∥∥

0
0
η1̇
η2̇

∥∥
∥
∥
∥
∥
∥∥

.

It is useful to write down Eq. (5.26) also in the explicit invariant form

iσj

ḂA
∂j ξ

A + (
� + i

∗
�
)
ηḂ − (

�j − ∗
�j

)
σ

j

ḂA
ξA + 1

2
�sj σ Ȧ

Ḃsj ηȦ = 0,

iσBȦj ∂jηȦ + (
� − i

∗
�
)
ξB − (

�j + ∗
�j

)
σBȦj ηȦ + 1

2
�sjσB

Asj ξ
A = 0.

Here the components of spintensors σ
j

ḂA
, σBȦj , σ Ȧ

Ḃsj , σB
Asj are defined by

equalities (3.96), (3.97), (3.99).
In the sequel, in connection with Eqs. (5.18) we shall consider the quantities Pi

j

determined by the functions ψ and ψ+:

Pi
j = α

(
ψ+γ j ∂iψ−∂iψ

+ ·γ jψ
) = −αγ

j
AB

(
ψ+A∂iψ

B −ψB∂iψ
+A
)
. (5.27)

Here α is some constant. It is obvious that the quantities Pi
j form the compo-

nents of the second rank tensor in the Minkowski space.
Let us calculate the divergence of the components Pi

j . We have

∂jPi
j = α

[
ψ+∂i

(
γ j ∂jψ

) − ∂i
(
∂jψ

+γ j
)
ψ + (

∂jψ
+γ j

)
∂iψ − ∂iψ

+(γ j ∂jψ
)]
.

(5.28)

The replacement of the terms γ j ∂jψ and ∂jψ
+γ j in (5.28) in accordance with

Eqs. (5.18) and (5.22) gives the following equation

∂jPi
j = −2αψ+∂i

(
�I + i�jγj + i

2
�jsγjs + ∗

�j ∗
γ j + ∗

�γ 5
)

· ψ. (5.29)
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Taking into account definitions (3.58) Eq. (5.29) it is possible to write in the form

∂jPi
j + 2α

(
Ω∂i� + jj ∂i�j + 1

2
Msj∂i�sj + Sj ∂i

∗
�j + N∂i

∗
�

)
= 0. (5.30)

If functions �, �j , �sj ,
∗
�j ,

∗
� are connected by the relation

2α

(
Ω∂i� + jj ∂i�j + 1

2
Msj∂i�sj + Sj ∂i

∗
�j + N∂i

∗
�

)
= ∂jNi

j ,

then Eq. (5.30) determines the conservation law

∂j
(Pi

j + Ni
j
) = 0. (5.31)

Further (in Sect. 5.6) it will be shown that due to Eqs. (5.18) is also carried out
the equation

P ij − Pji + αεijks∂kSs + 2α
(
�ij j − �j j i

+ �i
sM

js − �j
sM

is + ∗
�iSj − ∗

�jSi
) = 0, (5.32)

in which P ij = gikPk
j . For the physical spin 1/2 fields described by the Dirac

equations or the Heisenberg equations, the components

Pi
j = Pi

j + Ni
j = α

(
ψ+γ j ∂iψ − ∂iψ

+ · γ jψ
) + Ni

j (5.33)

define the four-dimensional energy-momentum tensor, Eq. (5.31) is the law of
conservation of energy-momentum.

5.3 Representation of Spinor Equations as Tensor Equations
for the Components of Vectors of the Proper Basis

In Sect. 3.4 of Chap. 3 it was shown that the spinor of the first rank ψ with a nonzero
invariant ρ is completely determined by specifying four orthonormal vectors of the
proper basis ĕa with components πi , ξ i , σ i , ui and by two invariants ρ, η. In this
connection differential equations for the spinor field ψ with nonzero invariant ρ can
be presented as tensor equations for the components of vectors of the proper tetrad
ĕa and two scalars ρ, η.

Below we give two various methods of obtaining of tensor equations for the
components of vectors of the proper basis ĕa and invariants ρ, η. The first method is
somewhat more complicated, but it shows that the tensor equations corresponding to
the spinor equations, represent simply a writing of the spinor equations in the proper
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orthonormal bases ĕa , determined by the field ψ . This circumstance is important in
the methodological relation and, in the same time, saves from the need of the direct
proof of equivalence the spinor and tensor equations. The second method brings
quicker to result and it is associated with the use of ready-made formulas (3.203)
expressing derivatives of spinor fields in terms of derivatives of the tensor fields.

Further in this section we assume that the spinor field in Eqs. (5.18) possesses a
nonzero invariant ρ �= 0.

1. The First Method To obtain tensor equations, corresponding to the spinor equa-
tions (5.18), we write down the spinor equations (5.18) in the proper bases ĕa deter-
mined by the spinor field ψ in accordance with equalities (3.128), (3.129), (3.126)

γ a∇̆aψ̆ +
(
�I + i�̆aγ

a + i

2
�̆abγ

ab + �̆∗
a

∗
γ a + ∗

�γ 5
)
ψ̆ = 0. (5.34)

Here γ a , ∇̆a , ψ̆ , and coefficients �̆ are calculated in bases ĕa . In particular, we
have

�̆a = h̆i
a�i, �̆ab = h̆i

ah̆
j
b�ij , �̆∗

a = h̆i
a

∗
�i .

By virtue of equalities (3.133) we find for coefficients�̆a , �̆ab,
∗
�a

�̆1 = πi�i, �̆2 = ξ i�i , �̆3 = σ i�i , �̆4 = ui�i ,

�̆∗
1 = πi ∗

�i, �̆∗
2 = ξ i ∗

�i, �̆∗
3 = σ i ∗

�i, �̆∗
4 = ui ∗

�i,

�̆12 = πiξj�ij , �̆23 = ξ iσ j �ij , �̆31 = σ iπj�ij ,

�̆14 = πiuj�ij , �̆24 = ξ iuj�ij , �̆34 = σ iuj�ij . (5.35)

Since the spintensors γ are invariant under the restricted Lorentz transformations,

the numerical values γ a , γ ab,
∗
γ a in the basis ĕa are the same as γ i , γ ij ,

∗
γ i in the

basis Эi .
From definition of the covariant derivative of the spinor field (see Chap. 2) it

follows

∇̆a = h̆i
a(∂i − Γi) = ∂̆a − 1

4
Δ̆a,bcγ

bc. (5.36)

The Ricci rotation coefficients Δ̆a,bc in this equality are expressed in terms of
the components of vectors πi , ξ , σ i , ui by the equalities (3.150). Γi are the spinor
connection coefficients. ∂̆a = h̆i

a∂i is the symbol of the derivative in the direction
of vectors of the tetrad ĕa . Due to definition (3.133) we have

∂̆1 = πi∂i , ∂̆2 = ξ i∂i, ∂̆3 = σ i∂i , ∂̆4 = ui∂i .
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Let us transform the first term γ a∇̆aψ̆ in Eq. (5.34). Using definition (5.36) and
formulas (3.11) for the product γ aγ bc it is easy to find

γ a∇̆aψ̆ =
(
γ a∂̆a− 1

4
Δ̆a,bcγ

aγ bc

)
ψ̆ =

(
γ a∂̆a+ 1

2
Δ̆b,a

bγ a− 1

4
εabcdΔ̆b,cd

∗
γ a

)
ψ̆.

We assume further that E and γ a in Eqs. (5.34) are determined by matri-
ces (3.24) and (3.25). In this case the components of spinor ψ̆ are defined by the
equality (3.144). Differentiating expression (3.144) we obtain the expression for
derivatives ∂̆aψ̆

∂̆aψ̆ = 1

2

(
I ∂̆a lnρ − γ 5∂̆aη

)
ψ̆. (5.37)

Substituting in the expression γ a∇̆aψ̆ the derivative ∂̆aψ̆ according to for-
mula (5.37), we obtain

γ a∇̆aψ̆ = 1

2

[
γ a

(
∂̆a lnρ + Δ̆b,a

b
)

− ∗
γ a

(
∂̆aη + 1

2
εabcdΔ̆b,cd

)]
ψ̆. (5.38)

Using relation (5.38), we write Eq. (5.34) in the form

γ a
(
∂̆a lnρ + Δ̆b,a

b
)
ψ̆ − ∗

γ a

(
∂̆aη + 1

2
εabcdΔ̆b,cd

)
ψ̆

+ 2

(
�I + i�̆aγ

a + i

2
�̆abγ

ab + �̆∗
a

∗
γ a + ∗

�γ 5
)
ψ̆ = 0. (5.39)

After equating the real and imaginary parts of Eq. (5.39) to zero and taking into
account definitions (3.24), (3.144), and (5.35) we obtain a system of eight real
equations

∂̆4 ln ρ − Δ̆1,14 − Δ̆2,24 − Δ̆3,34 = 0,

∂̆1 ln ρ + Δ̆2,12 − Δ̆3,31 − Δ̆4,14 = 2
[− ξ̆ a �̆a − π̆aŭb

(
�̆ab cos η − �̆∗

ab sin η
)]
,

∂̆2 ln ρ − Δ̆1,12 + Δ̆3,23 − Δ̆4,24 = 2
[
π̆a�̆a − ξ̆ a ŭb

(
�̆ab cosη − �̆∗

ab sin η
)]
,

∂̆3 ln ρ + Δ̆1,31 − Δ̆2,23 − Δ̆4,34 = 2
[
� sin η − ∗

� cos η

− σ̆ aŭb
(
�̆ab cosη − �̆∗

ab sin η
)]
,

∂̆4η + Δ̆1,23 + Δ̆2,31 + Δ̆3,12 = −2
(
ŭa�̆∗

a + σ̆ a �̆a

)
,

∂̆1η − Δ̆2,34 + Δ̆3,24 − Δ̆4,23 = 2
[
π̆a�̆∗

a + π̆aŭb
(
�̆ab sin η + �̆∗

ab cosη
)]
,

∂̆2η − Δ̆3,14 + Δ̆1,34 − Δ̆4,31 = 2
[
ξ̆ a �̆∗

a + ξ̆ a ŭb
(
�̆ab sin η + �̆∗

ab cosη
)]
,
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∂̆3η − Δ̆1,24 + Δ̆2,14 − Δ̆4,12 = 2
[
� cos η − ∗

� sin η + ŭa�̆a + σ̆ a �̆∗
a

+ σ̆ aŭb
(
�̆ab sin η + �̆∗

ab cos η
)]
,

which can be written in the compact form

∂̆a lnρ + Δ̆b,a
b + M̆a = 0,

∂̆aη + 1

2
εabcdΔ̆b,cd + N̆a = 0. (5.40)

The components of vectors M̆a , N̆a in Eqs. (5.40) are defined by the relations

M̆a = 2
[
σ̆a(

∗
� cos η − � sin η) + (

π̆aξ̆
b − π̆bξ̆a

)
�̆b

+ ŭb
(
�̆ab cosη −�̆∗

ab sin η
)]
,

N̆a = 2
[− �̆∗a − σ̆ a(� cosη + ∗

� sin η) + (
ŭa σ̆ b − ŭbσ̆ a

)
�̆b

− ŭb

(
�̆ab sin η + �̆∗ab cos η

)]
, (5.41)

where �̆∗ab = 1
2ε

abcd �̆cd . Equations (5.40) are invariant tensor equations.
From the adduced derivation it follows that Eqs. (5.40) represent the writing of

Eqs. (5.18) in basis ĕa and therefore are equivalent to them.

2. The Second Method Replacing in Eqs. (5.18) the derivatives ∂iψ by
formula (3.203a), we obtain

1

2
γ i

(
I∂i ln ρ − γ 5∂iη − 1

2
Δ̆i,sj γ

sj

)
ψ

+
(
�I + i�jγ

j + i

2
�sjγ

sj + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0. (5.42)

By means of identities (see (3.11))

γ iγ sj = −εisjm
∗
γm + gisγ j − gij γ s, γ iγ 5 = ∗

γ i

Eq. (5.42) can be transformed to the form

(
∂i ln ρ + Δ̆j,i

j
)
γ iψ −

(
∂iη + 1

2
εijmnΔ̆j,mn

)
∗
γ iψ

+ 2

(
�I + i�jγ

j + i

2
�sjγ

sj + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0. (5.43)
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Let us multiply Eq. (5.43) from the left by the spinor ψ+
(
Ωγ j − N

∗
γ j
)

and

from the right by the spinor ψ+
(
Nγ j + Ω

∗
γ j
)

. As a result after equating the

real and imaginary parts of Eq. (5.43) to zero we obtain the equations for the Ricci
rotation coefficients Δ̆i,j

s of the proper tetrads ĕa and the invariants ρ, η:

∂i lnρ + Δ̆j,i
j + Mi = 0,

∂iη + 1

2
εijmnΔ̆j,mn + Ni = 0. (5.44)

Here Mi = h̆i
aM̆a , Ni = h̆i

aN̆
a ; the quantities M̆a and N̆a are determined by

equalities (5.41); h̆i
a are the scale factors (3.133), determining proper tetrads ĕa of

the spinor field ψ(xi).
By replacing Ricci rotation coefficients Δ̆i,js in Eqs. (5.44) by formula (3.147),

after identical transformations we obtain the following system of equations

∂i ln ρ + πi∂jπ
j + ξi∂j ξ

j + σi∂jσ
j − ui∂ju

j + Mi = 0,

∂iη − 1

2
εijms

(
πj∂mπs + ξj ∂mξs + σj ∂mσs − uj∂mus

)+ Ni = 0. (5.45)

Contracting the first equation in (5.45) with components of vectors πi , ξ i , σ i , ui ,
we get the four scalar equations that are linear in derivatives

∂iρπ
i + ρπiMi = 0, ∂iρξ

i + ρξiMi = 0,

∂iρσ
i + ρσ iMi = 0, ∂iρu

i = 0. (5.46)

Here we take into account that due to definition (5.41) the equality uiMi = 0 is
fulfilled. It is obvious that the first equation in (5.45) is equivalent to Eqs. (5.46).

Let us write out the obtained tensor equations (5.44) and Eqs. (5.45), (5.46)
corresponding to the Dirac equation (5.19) and the Heisenberg equation (5.20).
Equations (5.44) corresponding to the Dirac equation, have the form

∂i lnρ + Δ̆j,i
j = 2mσi sin η,

∂iη + 1

2
εijmnΔ̆j,mn = 2mσi cos η.

The complete system of equations (5.45), (5.46) corresponding to the Dirac
equation, are written as follows

∂iρπ
i = 0, ∂iρξ

i = 0, ∂iρσ
i = 2mρ sin η, ∂iρu

i = 0,

∂iη − 1

2
εijms

(
πj∂mπs + ξj ∂mξs + σj∂mσs − uj∂mus

) = 2mσi cos η.
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To the spinor Heisenberg equations (5.20) there corresponds the following tensor
equations in components ρ, η, and Δ̆i,jk:

∂i lnρ + Δ̆j,i
j = 0,

∂iη + 1

2
εijmnΔ̆j,mn = 2λρσ i

and the equations in the vectors components πi , ξ i , σ i , ui of the proper tetrad of
the spinor field:

∂iρπ
i = 0, ∂iρξ

i = 0, ∂iρσ
i = 0, ∂iρu

i = 0,

∂iη − 1

2
εijms

(
πj∂mπs + ξj ∂mξs + σj∂mσs − uj∂mus

) = 2λρσ i .

5.4 Representation of Spinor Equations as Tensor Equations
for the Components of Vectors of the Complex Triad

In Sect. 3.5 of Chap. 3 it was shown that the spinor of the first rank in the pseudo-
Euclidean space E1

4 is completely defined by two invariants Ω , N and three complex
three-dimensional orthonormal vectors (complex triad) with componentsαa , βa , λa .
Therefore the spinor differential equations in the Minkowski space can be written as
tensor equations on the invariants Ω , N and the complex components of vectors αa ,
βa , λa [88]. Here the complete system relativistically invariant tensor equations in
components of vectors of complex triad and invariants Ω , N corresponding to the
spinor equations (5.17) is established.

To obtain such equations we consider the system of the tensor equations (5.44),
corresponding to the spinor equations (5.17). It is easy to see that Eqs. (5.44) can be
written in the form of the single complex vector equation

∂i ln(Ω + iN) + Δ̆j,i
j + i

2
εijmnΔ̆

j,mn + Gi = 0, (5.47)

where Ω + iN = ρ exp iη and

Gi = Mi + iNi = 2
{− i

∗
�i + (

∗
� − i�)σie

−iη

+ [
πiξ

j − πjξi + i
(
uiσ

j − ujσi

)]
�j + uj

(
�ij − i

∗
�ij

)
e−iη}.

Replacing in Eq. (5.47) the Ricci rotation coefficients by formula (3.182), we
write Eq. (5.47) in the form of the following invariant tensor equation which is
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equivalent to Eq. (5.47):

∂i ln(Ω + iN) + 1

2

(
αin∂jα

nj + βin∂j β
nj + λin∂j λ

nj
)+ Gi = 0. (5.48)

Let us contract equation (5.48) with components of tensor αsi with respect to the
index i. Taking into account relations (3.178) and (3.179), we get

αsi∂i ln(Ω + iN) + 1

2

(
∂jα

sj − iλs
n∂jβ

nj + iβs
n∂jλ

nj
)+ αsiGi = 0. (5.49)

Since due to identities (3.178), (3.179) the equality is fulfilled

−iλs
n∂j β

nj = −i∂j
(
λs

nβ
nj
)+ iβnj ∂jλ

s
n = ∂jα

sj + iβnj ∂jλ
s
n,

Eq. (5.49) can be transformed to the form

αsi∂i ln(Ω + iN) + ∂jα
sj + i

2

(
βs

n∂jλ
nj + βnj ∂j λ

s
n

)+ αsiGi = 0. (5.50)

Bearing in mind that by virtue of definitions (3.177) the identity is carried out

βs
n∂jλ

nj + βnj ∂j λ
s
n = −1

2
βij ∂

sλij ,

which is checked directly, we finally write down Eq. (5.50) in the form

1

Ω + iN
∂j [(Ω + iN)αsj ] − i

4
βij ∂

sλij + αsiGi = 0. (5.51)

Contracting equation (5.48) with components βsi and components λsi with respect
to the index i, similar to the derivation (5.49)–(5.51) we can get the following
equations

1

Ω + iN
∂j [(Ω + iN)βsj ] − i

4
λij ∂

sαij + βsiGi = 0,

1

Ω + iN
∂j [(Ω + iN)λsj ] − i

4
αij ∂

sβij + λsiGi = 0. (5.52)

The determinants of the matrices of the component αsi , βsi , λsi are equal to −1
(see equalities (3.180)), therefore the transition from Eqs. (5.48) to (5.51) and (5.52)
is nondegenerate.

Let us replace in Eqs. (5.51) and (5.52) the components of the four-dimensional
tensors αsi , βsi , λsi in terms of the components of the three-dimensional vectors
αμ, βμ, λμ in accordance with definitions (3.183). As a result Eq. (5.51) take the
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form

− 1

Ω + iN
∂μ
[
(Ω + iN)αμ

]+ iβμ∂
4λμ − αμGμ = 0, (5.53)

1

Ω + iN

[
∂4(Ω + iN)αμ + iεμνθ∂ν(Ω + iN)αθ

]+ iβν∂
μλν + αμjGj = 0.

The first equation in (5.52) is written as follows

− 1

Ω + iN
∂μ
[
(Ω + iN)βμ

]+ iλμ∂
4αμ − βμGμ = 0, (5.54)

1

Ω + iN

[
∂4(Ω + iN)βμ + iεμνθ∂ν(Ω + iN)βθ

]+ iλν∂
μαν + βμjGj = 0.

For the second equation in (5.52) we have

− 1

Ω + iN
∂μ
[
(Ω + iN)λμ

]+ iαμ∂
4βμ − λμGμ = 0, (5.55)

1

Ω + iN

[
∂4(Ω + iN)λμ + iεμνθ∂ν(Ω + iN)λθ

]+ iαν∂
μβν + λμjGj = 0.

In Eqs. (5.53)–(5.55) εμνθ are the components of the pseudotensor Levi-Civita.
The first equations in (5.53)–(5.55) correspond to Eqs. (5.48), (5.51), (5.52) for
s =4; the second equations in (5.53)–(5.55) correspond to Eqs. (5.48), (5.51), (5.52)
for s = 1, 2, 3.1

From the adduced derivation it is clear that Eqs. (5.48) or the each equation
in (5.51), (5.52) form the complete system of the relativistically invariant differential
equations.

5.5 Expression of the Tensor Components Pi
j in Terms

of Components of the Real and Complex Tensors

In this section we get an expression of the components of tensor Pi
j , determined

by equalities (5.27), in terms of the components of the various real and complex
tensors defined by spinor ψ . For writing of the quantities Pi

j in the components
of tensors C, D we multiply equality (5.27) by ψ+DψE and replace the terms
ψ+DψE(ψ+A∂iψ

B − ψB∂iψ
+A) in the right-hand side of the obtained equality

1The second equations in (5.53)–(5.55) with some special coefficients � are obtained in a different
way in [57]. Thus, the equations in [57] are the spatial part of the four-dimensional relativistically
invariant vector equations (5.51), (5.52).
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according to the obvious identity

ψ+DψE(ψ+A∂iψ
B −ψB∂iψ

+A) ≡ ψ+Dψ+A∂i(ψ
BψE)−ψ+DψB∂i(ψ

+AψE).

As result we get

ψ+DψEPi
j = −αγ

j

AB

[
ψ+Dψ+A∂i(ψ

BψE) − ψ+DψB∂i(ψ
+AψE)

]
. (5.56)

Contracting equality (5.56) with components of the invariant spintensors eDE ,
γ 5
DE , and γ s

DE with respect to the indices D, E, after transformations by means of
the identities (C.1) we get the following expressions for the components Pi

j :

ΩPi
j = α

2

[
− ∂i(NSj ) + Msj∂ijs − Sj ∂iN − 1

2

(
Ċsj ∂iCs + Csj ∂iĊ

s
)
]
,

NPi
j = α

2

[
∂i(ΩSj) + Sj ∂iΩ

+ 1

2
εjksm

(
− Mks∂ijm + 1

2
Cks∂i Ċm + 1

2
Ċks∂iCm

)]
,

j sPi
j = α

2

{
− Msj∂iΩ − 1

2
εsjklMkl∂iN + εsjklSk∂ijl + i

4

[
gsj

(
Ċk∂iC

k

− Ck∂iĊ
k + 1

2
Ċkl∂iC

kl − 1

2
Ckl∂i Ċ

kl

)
+ Cs∂iĊ

j − Ċs∂iC
j

+ Cj∂iĊ
s − Ċj ∂iC

s + Ċsk∂iCk
j − Csk∂i Ċk

j + Ċk
j ∂iC

sk

− Ck
j∂iĊ

sk

]}
. (5.57)

We note the identity following from the last equality in (5.57):

j sPi
j − jjPi

s ≡ α

(
− Msj∂iΩ − 1

2
εsjkmMkm∂iN + εsjkmSk∂ijm

)
. (5.58)

If ρ2 = Ω2 + N2 �= 0, then adding the first equation in (5.57), multiplied by
Ω/ρ, with the second equation in (5.57) multiplied by N/ρ, we get for components
Pi

j

Pi
j = α

[
− Sj ∂iη − 1

2
μjs∂ius + 1

4

(
Żjs∂iZs + Zjs∂iŻs

)
]
. (5.59)

The components us , μjs , η, Zs , Zjs in (5.59) are determined by equali-

ties (3.66), (3.67). Using relation (5.59), for the function
◦
Λ determined by the
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equality

◦
Λ = Pi

i ≡ α
(
ψ+γ i∂iψ − ∂iψ

+ · γ iψ
)
, (5.60)

we obtain2

◦
Λ = α

[
−Si∂iη − 1

2
μij ∂iuj + 1

4

(
Żij ∂iZj + Zij ∂iŻj

)
]
. (5.61)

Let us give now an expression for the components of tensor Pi
j only in terms of

the components of the real tensors Ω , j i , Mij , Si , N .
It is easy to see that the following identity is valid

ψ+DψE(ψ+BdψA − ψAdψ+B) − ψ+BψA(ψ+DdψE − ψEdψ+D)

≡ ψEψ+Bd(ψ+DψA) − ψ+DψAd(ψ+BψE), (5.62)

which is carried out for any differentiable functions ψA(xi) and ψ+A(xi).
Using identity (5.62), one can write for the components Pi

j

ψ+DψEPi
j = −αγ

j
AB

[
ψEψ+A∂i

(
ψ+DψB) − ψ+DψB∂i

(
ψEψ+A

)]

− iαjj
(
ψ+D∂iψ

E − ψE∂iψ
+D

)
. (5.63)

Let us now contract equation (5.63) with components of invariant spintensors
eDE and γ 5

DE with respect to the indices D, E. As a result of transformations with

2For the spinor equations of type (5.18), describing fields with half-integral spin (the Dirac

equations, the Heisenberg equation, etc.), function Λ = ◦
Λ + f (ψ,ψ+) with the corresponding

choice of an algebraic function f , is the Lagrangian. Formula (5.61) shows that the Lagrangian,
describing fields of the half-integer spin, within the framework of known classical theories is
represented in the form of sum Λ = Λ1 + Λ2 + Λ3 + Λint, where

Λ1 = −αSi∂iη + 1

2
α
(− SiS

i + m2
1η

2),

Λ2 = −1

2
αμij ∂iuj + 1

4
α

(
− 1

2
μijμ

ij + m2
2uiu

i

)
,

Λ3 = −1

4
α
(
Żij ∂iZj + Zij ∂i Żj

)+ 1

4
α

(
− 1

2
ŻijZ

ij + m2
3ŻiZ

i

)
.

Here m1, m2, m3 are constants. Functions Λ1, Λ2, Λ3 with arbitrary quantities Si , us , μjs , η, Zs ,
Zjs are the Lagrangians for the Proca equations describing, respectively, a neutral field of the spin
0, a neutral field of the spin 1 and a charged field of the spin 1. Function Λint does not depend
on derivatives of tensor fields. A possible physical interpretation of this equality is considered in
[76, 80].
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the aid identities (C.1) we obtain

ΩPi
j = α

[
ijj eDE

(
ψ+D∂iψ

E − ψE∂iψ
+D

)
− Sj ∂iN − Mjs∂ijs

]
, (5.64)

NPi
j = α

[
ijjγ 5

DE

(
ψ+D∂iψ

E − ψE∂iψ
+D

)
+ Sj ∂iΩ − 1

2
εjksqMks∂ijq

]
.

For a further transformation of expressions (5.64) we notice that from Eqs. (5.18) it
follows3

i

2
eDE(ψ+D∂iψ

E − ψE∂iψ
+D) =

= 1

2
∂sMi

s + �ji − �iΩ + 1

2
εimks

(∗
�mMks + �mkSs

)
,

i

2
γ 5
DE

(
ψ+D∂iψ

E − ψE∂iψ
+D

) =

= 1

4
εimks∂

mMks − �iN + �imSm − ∗
�mMim + ∗

�ji. (5.65)

Replacing in (5.64) the terms with components of spinor ψ according to
Eqs. (5.65), we find

ΩPi
j = α

(
jj ∂sMi

s − Mjs∂ijs − Sj ∂iN
)+

+ 2αjj

[
�ji − Ω�i + 1

2
εimks

(∗
�mMks + �mkSs

)
]
,

NPi
j = α

(
1

2
jj εimks∂

mMks − 1

2
εjksqMks∂ijq + Sj∂iΩ

)
+

+ 2αjj
(− N�i + �isS

s − ∗
�sMis + ∗

�ji
)
. (5.66)

If ρ2 = Ω2 + N2 �= 0, then adding the first equation (5.66), multiplied by Ω/ρ,
with the second equation (5.66) multiplied by N/ρ, we finally get

Pi
j = α

[
us∂iμ

js + uj ∂sμi
s − Sj∂iη + uj

(
Siu

k − Skui

)
∂kη

]

+ 2α

[
uiu

j (Ω� + N
∗
�) − uj

(
ρ�i − 1

2
εinksμ

nk ∗
�s

)

+ 1

ρ
uj

(
N�ik + 1

2
Ωεiksm�sm

)
Sk

]
. (5.67)

3To obtain Eqs. (5.65) it suffices to contract equation (5.17) with components of spintensors γi ,
∗
γ i

and use equality (3.11) (see also following section).
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The components us , μjs , η in Eq. (5.67) are determined by the equality (3.66).
Let us now get an expression of the tensor components P̆a

b = h̆i
ah̆j

bPi
j in the

proper basis ĕa in terms of the components of vectors πi , ξ i , σ i , ui and scalars ρ,
η. We have

P̆a
b = α

(
ψ̆+γ b∇̆aψ̆ − ∇̆aψ̆

+ · γ bψ̆
)
,

or, taking into account expression (5.36) for the covariant derivative

P̆a
b = α

[
ψ̆+γ b∂̆aψ̆ − ∂̆aψ̆

+ · γ bψ̆ − 1

4
Δ̆a,cdψ̆

+(γ bγ cd + γ cdγ b
)
ψ̆

]
.

From identities (3.11) it follows

γ bγ cd + γ cdγ b = −2εbcde
∗
γ e.

Using this equality and the definition S̆e = ψ̆+ ∗
γ eψ̆ , we rewrite the equation for

P̆a
b in the form

P̆a
b = α

(
ψ̆+γ b∂̆aψ̆ − ∂̆aψ̆

+ · γ bψ̆ + 1

2
εbcdeΔ̆a,cd S̆e

)
.

Replacing here the derivatives ∂̆aψ̆ by formula (5.37), we find

P̆a
b = α

(
−S̆b∂̆aη + 1

2
εbcdeΔ̆a,cd S̆e

)
.

Using this relation, for the function
◦
Λ determined by equality (5.60), we obtain

◦
Λ = −αSi

(
∂iη + 1

2
εijmnΔ̆j,mn

)
. (5.68)

Let us notice now that by virtue of definition (3.66) of the tensor components μij

it is carried out the equality

εijksSs = uiμjk + ujμki + ukμij , (5.69)

which can be obtained by contracting the last identity in (3.70) with components
of the Levi-Civita pseudotensor εijks . Replacing in (5.68) the contraction εijksSs

by formula (5.69) and using relation (3.149) for the components Δ̆k,ij u
j , expres-

sion (5.68) for
◦
Λ can be transformed to the form

◦
Λ = α

(
ψ+γ i∂iψ − ∂iψ

+ · γ iψ
) ≡ α

(
− Si∂iη − μij ∂iuj + 1

c
SiΩi

)
, (5.70)
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where the vector components Ωi are defined by the equality

Ωi = 1

2
εijksujΩks, Ωks = cuiΔ̆i,ks .

The constant coefficient c is introduced into formula (5.70) for the convenience in
connection with the further use of this formula (in the sequel c is the velocity of
light).

In the theory of spin liquids the components Ωi determine so called vector of the
internal rotation.

5.6 Representation of Spinor Equations as Tensor Equations
in the Components of the Real Tensors

As it was already noted, from the spinor equations it can be obtained the closed
system of tensor equations in the components of the real tensors D = {Ω , j i , Mij ,
Si , N}. Real tensors D in the known physical theories have a simple physical sense
therefore such system of equations also is of interest.

To obtain such equations that are a consequence of Eqs. (5.17) we contract

equation (5.17) with components of spintensors ψ+
B , ψ+

C γ Ci
B , ψ+

C γ Cij
B , ψ+

C

∗
γ Ci

B ,
ψ+

C γ 5C
B with respect to the index B. As a result, after separating the real and

imaginary parts and transformations by means of equality (3.11), we obtain

a. ∂ij
i = 0,

b.
1

2
γ i
AB

(
ψ+A∂iψ

B − ψB∂iψ
+A
)

= � Ω + �ij
i + 1

2
�ijM

ij + ∗
�iS

i + ∗
�N,

c.
i

2
eAB(ψ

+A∂iψB − ψB∂iψ+A)

= 1

2
∂jM

ij + �j i − �iΩ + 1

2
εijks

(∗
�jMks + �jkSs

)
,

d.
1

2
γ

ij
AB

(
ψ+A∂jψ

B − ψB∂jψ
+A
)

= 1

2
∂iΩ + �jM

ij + �ij jj + ∗
�iN + ∗

�Si,

e.
1

2

(
gkiγ

j
AB − gkj γ i

AB

)(
ψ+A∂kψ

B − ψB∂kψ
+A
)

= 1

2
εijks∂kSs + �ij j − �j j i + �i

sM
js − �j

sM
is + ∗

�iSj − ∗
�jSi,
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f.
i

2
εijks

∗
γ ABk

(
ψ+A∂sψ

B − ψB∂sψ
+A
)

= −1

2
(∂ij j − ∂j j i) + �Mij + εijks (�kSs + ∗

�kjs) + Ω�ij

− 1

2
εijks

(
N�ks − ∗

�Mks

)
,

g.
1

4
εijksγABks

(
ψ+A∂jψ

B − ψB∂jψ
+A
)

= 1

2
∂iN − �Si + 1

2
εijks(�jMks − �ksjj ) − ∗

�iΩ,

h.
i

2
γ 5
AB

(
ψ+A∂iψB − ψB∂iψ+A

)

= 1

4
εijks∂jMks − �iN + �ij Sj − ∗

�jM
ij + ∗

�j i,

i.
i

2
∗
γ

j
AB

(
ψ+A∂jψ

B − ψB∂jψ
+A
) = −�iS

i − ∗
�ij

i,

j.
1

2
∂iS

i − �N − 1

4
εijks�ijMks + ∗

� Ω = 0. (5.71)

We give a more detailed derivation of one of Eqs. (5.71), for example, equation
(e) in (5.71). It is convenient to carry out calculations using the matrix notations.

Multiplying Eq. (5.18) by ψ+γ kn from the left and subtracting from the obtained
result Eq. (5.22), multiplied from the right by γ knψ , we obtain

ψ+γ knγ i∂iψ + (
∂iψ

+)γ iγ knψ + ψ+[i�j (γ
knγ j − γ jγ kn)

+ i

2
�sj (γ

knγ sj − γ sj γ kn)+ ∗
�j (γ

kn ∗
γ j − ∗

γ j γ kn)+ ∗
�(γ knγ 5 − γ 5γ kn)

]
ψ = 0.

Let us replace in this equation the products of the matrices γ by formulas (3.11):

ψ+(− εknim
∗
γm + γ kgni − γ ngki

)
∂iψ

+ ∂iψ
+(− εknim

∗
γm − γ kgni + γ ngki

)
ψ + 2ψ+[i�j (γ

kgnj − γ ngkj )

+ i�sj (γ
skgjn − γ sngjk) + ∗

�j (
∗
γ kgnj − ∗

γ ngkj )
]
ψ = 0.
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Bearing in mind definitions (3.58) and (3.59) of the components of the real
tensors Ω , j i , μij , Si , N , we write the last equation in the form

1

2

[
ψ+(γ kgni − γ ngki)∂iψ − ∂iψ

+ · (γ kgni − γ ngki)ψ
]

= 1

2
εknij ∂iSj + �kjn − �njk + �k

sM
ns − �n

sM
ks + ∗

�kSn − ∗
�nSk,

that coincides with the equation (e) in (5.71). The other equations in (5.71) are
obtained similarly.

Calculating the determinant of the matrix of the transformation of Eqs. (5.17)–
(5.71), it is possible to show that the system of equations (5.71) is equivalent to the
spinor equations (5.17). As the complete system of the equations one can take, for
example, the equations (a), (b), (e), (j) in (5.71).

The equations (a) and (j) in (5.71) are, respectively, the scalar and pseudo-scalar
equations in the invariant tensor form. Bearing in mind definition (5.27) of the tensor
component Pi

j , the equation (e) in (5.71) can be written in the form

P ij − Pji + αεijks∂kSs + 2α
(
�ij j − �j j i

+ �isMj
s − �jsMi

s + ∗
�iSj − ∗

�jSi
) = 0. (5.72)

Equation (5.72), in which the components of the tensor P ij are defined by
equality (5.66), is the tensor equation in the components of the real tensors Ω , j i ,
Mij , Si , N .

The equation (b) in (5.71) with the aid of the components Pi
j can be written as

follows

Pi
i = −2α

(
�Ω + �ij

i + 1

2
�ijM

ij + ∗
�iS

i + ∗
�N

)
. (5.73)

If the components of the tensor Pi
j in Eq. (5.73) are defined according to (5.67),

then Eq. (5.73) is fulfilled identically. This is related to the fact that when we
transformed expression (5.27) to the form (5.67) were used Eqs. (5.65) which are
fulfilled by virtue of Eqs. (5.17). Therefore expressions for Pi

j , determined by
equalities (5.27) and (5.67), coincide only due to Eqs. (5.17). For the same reason
the system of the equations (a), (j) in (5.71) and (5.72), in which the components
Pi

j are determined by (5.67) is, in general, not closed.
To close the system of equations (a), (j) in (5.71) and (5.72) it is possible to take

Eqs. (5.30) in which the components of the tensors Pi
j are expressed in terms of the

components of the real tensors Ω , j i , Mij , Si , N by formulas (5.66).
Using formula (5.67) for Pi

j , it is possible to write Eq. (5.72) in the real
components ρ, ui , Si , η. For this purpose we replace the components of tensor
P ij in Eq. (5.72) by formula (5.67), and the components εijksSs by formula (5.69).
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As a result after transformations we get

ρ

g

d

dτ

(
1

ρ
μij

)
+ μi

n

∗
Fnj − μj

n

∗
Fni = 0. (5.74)

Here d/dτ = cui∂i ; c and g are arbitrary nonzero constants; the components of

the tensor
∗
F ij are defined by the equality

∗
F ij = c

g

{
(
δim + umui

)(
δ
j
n + unu

j
)
[
εmnksuk(−2

∗
�s + ∂sη)

+ 2

ρ

(
Ω�mn − 1

2
Nεmnks�ks

)]
− ∂iuj + ∂jui

}
. (5.75)

The constant coefficients c, g are introduced in Eqs. (5.74) and (5.75) for the sake
of convenience in connection with the further applications.

Components
∗
F ij are antisymmetric in the indices i, j :

∗
F ij = − ∗

Fji .
Contracting equations (5.74) with components of the tensor εmijku

k with respect
to the indices i, j , Eqs. (5.74) one can rewrite in the form

ρ
d

dτ

(
1

ρ
Sm

)
− g

∗
FmjS

j = 0. (5.76)

Equations (5.74) also follows from Eqs. (5.76), therefore Eqs. (5.74) are equivalent
to (5.76).

It is easy to see that due to definition (5.75) of the components
∗
F ij , the

contraction of Eqs. (5.76) with components of the vector uk is fulfilled identically

um

[
ρ

d

dτ

(
1

ρ
Sm

)
− g

∗
FmjS

j

]
≡ 0.

By virtue of the equation (b) in (3.60) and the anti-symmetry of the components
∗
Fmj , the contraction of Eqs. (5.76) with components of the vector Sm also is fulfilled
identically

Sm

[
ρ

d

dτ

(
1

ρ
Sm

)
− g

∗
FmjS

j

]
≡ 0.

Thus, Eqs. (5.76) contain in general case no more than two independent equa-
tions.

Equations (5.76) can be obtained also directly from Eqs. (5.44). Indeed, contract-
ing the second equation in (5.44) with components of the tensor εmnsius with respect



252 5 Tensor Forms of Spinor Equations

to the index i and taking into account definition (5.41) for Na , we find

(−Δ̆mn,s + Δ̆n,ms − Δ̆s,mn)us − εmnsius∂iη

= 2

ρ2

{(
�Ω + ∗

�N + �ij
i
)
μmn − εmnsius

[
ρ2 ∗

�i + jj
(
Ω

∗
�ij + N�ij

)]}
.

Bearing in mind that Δ̆m,nsus = −∂mun, this equation can be represented in the
form

usΔ̆
s,ij = −F ij , (5.77)

where the components of the antisymmetric tensor F ij are defined by the following
relation

F ij = (
δim + uium

)(
δ
j
n + ujun

)[
εmnksuk(−2

∗
�s + ∂sη)

+ 2

ρ
(Ω�mn − N

∗
�mn) + 2

ρ2 μ
mn(Ω� + N

∗
� + �ij

i)

]
− ∂iuj + ∂jui .

From this one can obtain the equations for derivatives of tetrad vectors πi , ξ i , σ i .
For example, by contracting equation (5.77) with components σj with respect to the
index j , we obtain Eq. (5.76), since due to definition μmn an identity is fulfilled

(
δim + uium

)(
δ
j
n + ujun

)
μmnSj ≡ μij Sj = 0.

For the convenience of references we write out separately a closed system
of equations for the components of real tensors. This system is a corollary of
Eqs. (5.17):

∂iρu
i = 0,

∂jPi
j + 2α

(
Ω∂i� + jj ∂i�j + 1

2
Msj∂i�sj + Sj ∂i

∗
�j + N∂i

∗
�
) = 0,

ρ
d

dτ

(
1

ρ
Sm

)
− g

∗
FmjS

j = 0,

1

2
∂iS

i − �N − 1

4
εijks�ijMks + ∗

�Ω = 0. (5.78)

The components of the tensors Pi
j and

∗
Fmj in Eqs. (5.78) are determined by

equalities (5.67) and (5.75).
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5.7 The Tensor Representation of the Spinor Weyl Equations

Let us consider in the Minkowski space referred to a Cartesian coordinate system
the differential equations

γ i∂iψ = 0, (5.79)

in which the components of the first rank spinor ψ satisfy the algebraic equations

ψ = iγ 5ψ or ψ = −iγ 5ψ.

We shall assume further that the metric spinor E and the spintensors γ i are
defined by matrices (3.81) and (3.82). In this case the components of an arbitrary
spinor can be represented in the form

ψ =
∥
∥∥
∥
ξA

ηȦ

∥
∥∥
∥ , Ȧ, A = 1, 2,

where the components ξA and ηȦ define the two-component spinors with the fixed
relative sign.

Taking into account that spintensor γ 5 is defined by the diagonal matrix (3.82),
we find that from condition ψ = −iγ 5ψ it follows ξA = 0, while from condition
ψ = iγ 5ψ it follows ηȦ = 0. Respectively, taking into account expression (3.94) of
the Dirac matrices γ i in terms of the Pauli matrices σα, we find that Eq. (5.79) with
the additional condition ψ = −iγ 5ψ is written in the form

σBȦi∂iηȦ = 0, (5.80)

while for ψ = iγ 5ψ in the form

σ i

ḂA
∂iξ

A = 0, (5.81)

where σ i

ḂA
and σBȦi are the components of the invariant spintensors, defined as

σ i

ḂA
= {−σα,−I }, σBȦi = {σα,−I }.

Here σα are the Pauli matrices, I is the two-dimensional unit matrix.
Equations (5.80) and (5.81) for the two-component spinors ξ and η are called the

Weyl equations. Equations (5.80) and (5.81) are a particular case of Eqs. (5.18) for

ψ = ±iγ 5ψ , � = �j = �ij=
∗
�j = ∗

� = 0.
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The current vector for the fields described by the Weyl equations is defined by
the components j i :

j i = −σ i

ḂA
ξ̇BξA or j i = −σBȦi η̇ḂηȦ, (5.82)

which by virtue of the Weyl equations satisfy the conservation law

∂ij
i = 0.

The components of the energy-momentum tensor, corresponding to the Weyl
equation (5.80), have the form

Pi
j = i

2
σBȦj

(
η̇Ḃ∂iηȦ − ηȦ∂i η̇Ḃ

)
. (5.83)

The components of the energy-momentum tensor, corresponding to the Weyl
equation (5.81), have the form

Pi
j = i

2
σ

j

ḂA

(
ξ̇B∂iξ

A − ξA∂i ξ̇
B
)
. (5.84)

It is easy to be convinced that by virtue of the Weyl equations the components of
the energy-momentum tensors Pi

j satisfy the conservation law

∂jPi
j = 0 (5.85)

and

∂k

(
xjP ik − xiP jk ∓ 1

2
εijksjs

)
= P ij − Pji ∓ 1

2
εijks∂kjs = 0. (5.86)

Here and in the subsequent equations the upper sign corresponds to the Weyl
equation (5.81), the lower sign corresponds to Eq. (5.80).

Due to the Weyl equations the trace of the energy-momentum tensors is equal to
zero

Pi
i = 0. (5.87)

Definitions (5.83), (5.84) and Eqs. (5.85)–(5.87) are the particular case of defini-
tions (5.33), (5.27) and Eqs. (5.31), (5.32), (5.73) for ψ = ±iγ 5ψ and � = �j =
�ij=

∗
�j = ∗

� = 0, α = 1/2. In this case in formula (5.33) the quantities Ni
j can be

put equal to zero and, consequently, Pi
j = Pi

j for ψ = ±iγ 5ψ , α = 1/2.
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Let us now derive the tensor equations in the components of the complex tensor
Cij equivalent to the Weyl equations.4 For this purpose we contract the Weyl
equations (5.81) with components of spintensor σCḂiξC with respect to the index
Ḃ. Replacing the contraction σCḂiσ

j

ḂA
by formula (3.105), we obtain

ξC
(
iσC

A
ij − gij δCA

)
∂j ξ

A = 0. (5.88)

Bearing in mind the definition of the tensor component Cij = −iσ ij

ACξ
AξC , due to

symmetry properties σBA
ij = σAB

ij , εBA = −εAB we have

iσC
A
ij ξC∂j ξ

A = − i

2
σ

ij

AC∂j (ξ
CξA) = 1

2
∂jC

ij ,

ξC∂j ξ
C = 1

2
εBC

(− ξB∂j ξ
C + ξC∂j ξ

B
)
.

Therefore Eq. (5.88) can be rewritten in the form

∂jC
ij + εBC(ξ

B∂iξC − ξC∂iξB) = 0. (5.89)

Let us multiply Eq. (5.89) by −iσmn
DAξ

DξA = Cmn and, using the obvious
identity

ξA(ξBdξC − ξCdξB) ≡ ξBd(ξAξC) − ξCd(ξBξA),

we transform Eq. (5.89) to the form

Cmn∂jC
ij + iσmn

DAεBC

[
ξDξB∂i

(
ξAξC

)− ξCξD∂i
(
ξBξA

)] = 0

From this, taking into account the symmetry property εBC = −εCB , we find

Cmn∂jC
ij − 2iσmn

DAεBCξ
CξD∂i

(
ξBξA

) = 0.

Replacing in this equation the product of spintensors σmn
DAεBC by formula (3.108),

we obtain

Cmn∂jCi
j + Cm

j ∂iC
nj = 0. (5.90)

4Tensor equations in the components of the complex tensor Cij , equivalent to the Weyl equations,
are obtained in [74, 82], see also [50, p. 221]. In order to avoid misunderstanding we recall that
the spinor in the Weyl and Dirac equations is considered as the geometric object in the Minkowski
space and its components are defined up to a common sign.
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To close equations (5.90) it is necessary to add to them the algebraic equations (see
Sect. 3.3, Chap. 3)

Cij = i

2
εijksCks, CijC

ij = 0.

Multiplying Eq. (5.81) by σ s

ḂA
ξ̇BξA = −j s and carrying out the similar

transformations, it is possible to get the invariant tensor equation [74]

j s∂jC
qj = jj ∂

qCjs, (5.91)

The components Cij and j i are related by the algebraic equations

2j ij s = Ci
mĊsm. (5.92)

The tensor equations for the components of the tensor Cij = −iσ ḂȦij ηḂηȦ and

the vector j s = −σBȦs η̇ḂηȦ, corresponding to the Weyl spinor equations (5.80),
are obtained by a similar way and can also be written in the form (5.90), (5.91), but
in this case they must be supplemented by the algebraic equations

Cij = − i

2
εijksCks, CijC

ij = 0,

2j ij s = Ci
mĊsm, (5.93)

Taking into account definition (3.116) Eq. (5.91) for s = 4 is written as follows5

j4∂αp
α = jα∂4p

α,

j4 (∂4p
α ± iεαβλ∂βpλ

) = jλ∂
αpλ. (5.94)

We note one more tensor equation

j s∂qj
k − jk∂qj

s = 1

2

(
Ċsk∂jCq

j + Csk∂j Ċq
j
)
, (5.95)

which is obtained by transformation of Eq. (5.89) for the spinor field ξ multiplied
by Ċij = iσ̇ ij

ACξ̇Aξ̇C , or by an analogous transformation of Eq. (5.90) for the spinor
field η.

As already noted, definitions (5.83) and (5.84) of the components of the energy-
momentum tensor are obtained from formula (5.27) if to put in it α = 1/2 and
ψ = ±iγ 5ψ . Therefore, using relations (3.113), (3.118) and α = 1/2, from

5The second equation in (5.94) for the neutrino is obtained a different way in [56] (where the
notation vi = j i/j4 is used). See also [44, 45, 58].
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definition (5.57) of the components of the tensor Pi
j we get the formula for the

components of the energy-momentum tensor for the Weyl equations

j sPi
j ≡ 1

4

[
∓ εsjkljk∂ijl + i

2

(
Ċsk∂iCk

j − Csk∂i Ċk
j
)]

. (5.96)

From this, in particular, it follows the algebraic identity connecting the compo-
nents of the energy-momentum tensor

jjPi
j = 0, (5.97)

Equation (5.97) is obtained directly by the contraction of Eq. (5.96) with respect to
the indices j , s taking into account identity

Ċjk∂iCjk ≡ 0

which is fulfilled due to the first equations in (5.92), (5.93).
Let us give also identity (5.58) for the case under consideration

j sPi
j − jjPi

s ≡ ∓1

2
εsjkmjk∂ijm.

5.8 Spinor Differential Equations in the Four-Dimensional
Riemannian Space

5.8.1 The Tensor Formalism

Consider the Riemannian space V4 with the metric signature (+,+,+,−), referred
to a coordinate system with the variables xi and with the covariant holonomic vector
basis Эi (x

i). Let us introduce at each point xi of the space V4 the tangent pseudo-
Euclidean space with an orthonormal basis ea(x

i), a = 1, 2, 3, 4.
We will denote the indices of the tensor components, specified in the holonomic

bases Эi by the Latin letters i, j , k,. . . . The indices of tensor components specified
in the local orthonormal bases ea will be denoted by the first letters of the Latin
alphabet a, b, c, d , e, f .

Bases Эi and ea are connected by the scale factors

ea = hi
aЭi , Эi = hi

aea.

Let gij be the covariant components of the metric tensor of the Riemannian space,
calculated in the basis Эi ; the covariant components of the metric tensor calculated
in orthonormal bases ea , are defined by the diagonal matrix gab = diag(1, 1, 1,−1).
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The components of the metric tensor gij and gab are connected by the equalities

gij = hi
ahj

bgab, gab = hi
ah

j
bgij . (5.98)

Since det ‖gab‖ = −1, equality (2.23) in the Riemannian space V4 is written as
follows

− det ‖gij‖ = (
det ‖hi

a‖)2
. (5.99)

The parallel transport of the tensors specified by components in an orthonormal
basis ea , is defined by means of the Ricci rotation coefficients Δi,bc which can be
defined in terms of the scale factors by the equality (see Chap. 2, Sect. 2.2)

Δi,bc = 1

2

[
hj

c

(
∂ihjb − ∂jhib

)− hj
b

(
∂ihjc − ∂jhic

)

+ hi
ahj

bh
s
c

(
∂jhsa − ∂shja

)]
. (5.100)

Parallel transport of the spinors specified by the components ψ in orthonormal
basis ea , in the Riemannian space is defined by the spinor connection coefficients
γi (the Fock–Ivanenko coefficients)

Γi = 1

4
Δi,bcγ

bc, γ bc = 1

2
(γ bγ c − γ cγ b), (5.101)

where the Ricci rotation coefficients Δi,bc are defined by equality (5.100); γ a are
the Dirac matrices satisfying equation

γ aγ b + γ bγ a = 2gabI, (5.102)

do not depend on variables xi .
Formulas for the covariant derivatives of the first rank spinor fields ψ(xi) and

ψ+(xi), specified in an arbitrary orthonormal basis ea(x
i), have the form

∇sψ = ∂sψ − 1

4
Δs,bcγ

bcψ,

∇sψ
+ = ∂sψ

+ + 1

4
Δs,bcψ

+γ bc. (5.103)

The vectors ĕa = {πiЭi , ξ
iЭi , σ

iЭi , u
iЭi} of the proper basis of the spinor

field ψ(xi) are defined by the components

ρπi = Im(ψT Eγ iψ),

ρξ i = Re(ψT Eγ iψ),
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ρσ i = ψ+γ iγ 5ψ,

ρui = iψ+γ iψ,

ρ exp iη = ψ+ψ + iψ+γ 5ψ. (5.104)

Here the matrices γ i = hi
aγ

a depend on variables xi and by virtue of
Eqs. (5.98), (5.102) satisfy the equation

γ iγ j + γ jγ i = 2gij I.

If the Dirac matrices γa and the metric spinor E are defined by equali-
ties (3.24), (3.25), then components of the spinor ψ̆ , calculated in the proper
basis ĕa , are determined by the relations

ψ̆ 1 = 0, ψ̆ 2 = i
√

1
2ρ exp

(
i
2η
)
,

ψ̆ 3 = 0, ψ̆ 4 = i
√

1
2ρ exp

(
− i

2η
)
.

Formulas (3.203) for derivatives of components of the spinor field in the
Riemannian space are written in the form

∇sψ =
(

1

2
I∂s lnρ − 1

2
γ 5∂sη − 1

4
Δ̆s,ij γ

ij

)
ψ,

∇sψ
+ = ψ+

(
1

2
I∂s lnρ − 1

2
γ 5∂sη + 1

4
Δ̆s,ijγ

ij

)
, (5.105)

where the covariant derivatives ∇sψ , ∇sψ
+ are defined by equalities (5.103), while

the Ricci rotation coefficients Δ̆s,ij correspond to proper orthonormal bases ĕa(x
i)

of the spinor field ψ(xi)

Δ̆s,ij = 1

2

(
πi∇sπj − πj∇sπi + ξi∇sξj − ξj∇sξi

+ σi∇sσj − σj∇sσi − ui∇suj + uj∇sui

)
. (5.106)

The derivation of these formulas in the Riemannian space insignificantly differs
from them derivation in pseudo-Euclidean space.

To write of the first order spinor differential equations (5.18) in the Riemannian
space it suffices to replace the symbol of the partial derivative ∂i in these equations
by the symbol of the covariant derivative ∇i . Thus, Eq. (5.18) in an arbitrary
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coordinate system with variables xi in the Riemannian space is written as follows

γ i∇iψ +
(
�I + i�j γ

j + i

2
�jsγ

js + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0. (5.107)

Here the components of a spinor ψ are calculated in the orthonormal bases ea .
Let us transform operator γ i∇i in Eqs. (5.107). According to definition (5.103) we
have

γ i∇i = γ i

(
∂i − 1

4
Δi,bcγ

bc

)
= γ i∂i − 1

4
Δi,jsγ

iγ js . (5.108)

Replacing the product of the matrices γ iγ js in formula (5.108) in accordance
with Eqs. (3.11), we get

γ i∇i = γ i

[
∂i + 1

2

(
Δj,i

j I − 1

2
εijmnΔ

j,mnγ 5
)]

. (5.109)

Therefore Eq. (5.107) can be written down in the form

γ i

[
∂i + 1

2

(
Δj,i

j I − 1

2
εijmnΔ

j,mnγ 5
)]

ψ

+
(
�I + i�jγ

j + i

2
�jsγ

js + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0

or, using orthonormal bases ea :

γ a

[
∇′

a + 1

2

(
Δb,a

bI − 1

2
εabcdΔ

b,cdγ 5
)]

ψ

+
(
�I + i�aγ

a + i

2
�abγ

ab + ∗
�a

∗
γ a + ∗

�γ 5
)
ψ = 0. (5.110)

Here ∇′
a = hi

a∇′
i . For the derivative of the spinor field ψ we have ∇′

aψ =
∂aψ = hi

a∂i .
The writing of the spinor equations in the Riemannian space in the form (5.107)

and (5.110) is significantly founded on introduction to the Riemannian space the
system of orthonormal tetrads ea(x

i) in which are considered the components of
the spinor ψ [6, 30, 36, 41, 42, 47]. For specifying of the system of orthonormal
tetrads ea(x

i) it is necessary to introduce sixteen functions—scale factors hi
a(xi).

Due to Eqs. (5.98) these coefficients with the given metric tensor of the Riemannian
space contain six arbitrary functions (related to possibility of arbitrary Lorentz
transformation of orthonormal bases ea(x

i) with the fixed holonomic basis Эi in
the Riemannian space).
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Therefore for the mathematical formulation of problems related to Eqs. (5.107),
(5.110) it is necessary to specify the tetrads ea(x

i) (or a tetrad gauge is said to be
needed). A large number of such gauges are known. All these gauges are divided
into two groups. Some gauges are defined by algebraic equations for scale factors.
They allow us to exclude from the equations six additional arbitrary functions in
scale factors, but all of them are not invariant under transformation of the variables
xi of the coordinate system. The other gauges are invariant with respect to the choice
of the coordinate system xi , however they are written in the form of differential
equations for the scale factors, which complicates the initial system of equations.

As the tetrad gauge condition in the spinor equations one may accept [86] that
tetrads ea(x

i) coincide with the proper tetrads ĕa(x
i), which are determined by the

spinor field ψ(xi) by formulas (5.104). Thus, this gauge is written in the form

ea(x
i) = ĕa(x

i)

or in the form of the conditions directly on the scale factors

hi
a = h̆i

a =

∥∥
∥
∥
∥
∥∥
∥

π1 ξ1 σ 1 u1

π2 ξ2 σ 2 u2

π3 ξ3 σ 3 u3

π4 ξ4 σ 4 u4

∥∥
∥
∥
∥
∥∥
∥

, (5.111)

where the componentsπi , ξ i , σ i , ui determine the vectors of the proper orthonormal
tetrad ĕa(x

i) and are calculated in terms of the spinor field ψ(xi) by formu-
las (5.104).

It is obvious that such tetrad gauge is purely algebraic and, at the same time, is
invariant under transformations of the coordinate system xi .

The writing of the spinor equations (5.107) in the pseudo-Euclidean space when
using such tetrad gauge have been obtained in Sect. 5.3 and it has the form

∂̆a lnρ + Δ̆b,a
b + M̆a = 0,

∂̆aη + 1

2
εabcdΔ̆b,cd + N̆a = 0, (5.112)

where the components of the vectors M̆a , N̆a are defined by equality (5.41). The
Ricci rotation coefficients Δ̆a,bc for the system of proper tetrads ĕa of the spinor
field are defined by Eqs. (3.150).

In the Riemannian space the corresponding equations may be also written in the
form of Eqs. (5.112), however the Ricci rotation coefficients Δ̆a,bc in this case are
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defined as follows (see Chap. 2)

Δ̆a,bc = 1

2

[
h̆j

a(∂̆bh̆jc − ∂̆ch̆jb) + h̆j
c(∂̆ah̆jb + ∂̆bh̆ja)

− h̆j
b(∂̆ah̆jc + ∂̆ch̆ja)

]
, (5.113)

Here the scale factors h̆i
a are determined by matrix (5.111), ∂̆a is the directional

derivative along the vectors of the proper orthonormal tetrad ĕa:

∂̆1 = πi∂i , ∂̆2 = ξ i∂i, ∂̆3 = σ i∂i , ∂̆4 = ui∂i .

On integration of the spinor equations in the Riemannian space it is useful to bear
in mind the expression of the Ricci rotation coefficients (5.113) for system of proper
tetrads ĕa which are written directly in components of the vectors πi , ξ i , σ i , ui :

Δ̆1,12 = ξ i ∂̆1πi − πi ∂̆2πi, Δ̆2,12 = −πi∂̆2ξi + ξ i ∂̆1ξi ,

Δ̆3,12 = 1

2

(
ξ i ∂̆3πi − πi ∂̆3ξi

)+ 1

2

(
σ i ∂̆1ξi + ξ i ∂̆1σi − σ i∂̆2πi − πi∂̆2σi

)
,

Δ̆4,12 = 1

2

(
ξ i ∂̆4πi − πi ∂̆4ξi

)+ 1

2

(
ui ∂̆1ξi + ξ i ∂̆1ui − ui ∂̆2πi − πi ∂̆2ui

)
,

Δ̆1,23 = 1

2

(
σ i∂̆1ξi − ξ i ∂̆1σi

)+ 1

2

(
πi∂̆2σi + σ i ∂̆2πi − πi ∂̆3ξi − ξ i ∂̆3πi

)
,

Δ̆2,23 = σ i ∂̆2ξi − ξ i ∂̆3ξi , Δ̆3,23 = −ξ i ∂̆3σi + σ i ∂̆2σi,

Δ̆4,23 = 1

2

(
σ i∂̆4ξi − ξ i ∂̆4σi

)+ 1

2

(
σ i∂̆2ui + ui∂̆2σi − ξ i ∂̆3ui − ui∂̆3ξi

)
,

Δ̆1,31 = −σ i∂̆1πi + πi∂̆3πi, Δ̆3,31 = πi∂̆3σi − σ i ∂̆1σi,

Δ̆2,31 = 1

2

(
πi∂̆2σi − σ i ∂̆2πi

)+ 1

2

(
πi∂̆3ξi + ξ i ∂̆3πi − ξ i ∂̆1σi − σ i∂̆1ξi

)
,

Δ̆4,31 = 1

2

(
πi∂̆4σi − σ i ∂̆4πi

)+ 1

2

(
πi∂̆3ui + ui∂̆3πi − σ i∂̆1ui − ui∂̆1σi

)
,

Δ̆1,14 = ui∂̆1πi − πi∂̆4πi, Δ̆4,14 = −πi∂̆4ui + ui∂̆1ui,

Δ̆2,14 = 1

2

(
ui∂̆2πi − πi∂̆2ui

)+ 1

2

(
ξ i ∂̆1ui + ui∂̆1ξi − πi ∂̆4ξi − ξ i ∂̆4πi

)
,

Δ̆3,14 = 1

2

(
ui∂̆3πi − πi∂̆3ui

)+ 1

2

(
σ i ∂̆1ui + ui ∂̆1σi − πi∂̆4σi − σ i ∂̆4πi

)
,

Δ̆1,24 = 1

2

(
ui∂̆1ξi − ξ i ∂̆1ui

)+ 1

2

(
πi ∂̆2ui + ui ∂̆2πi − πi ∂̆4ξi − ξ i ∂̆4πi

)
,

Δ̆2,24 = ui∂̆2ξi − ξ i ∂̆4ξi , Δ̆4,24 = −ξ i ∂̆4ui + ui∂̆2ui,
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Δ̆3,24 = 1

2

(
ui∂̆3ξi − ξ i ∂̆3ui

)+ 1

2

(
σ i ∂̆2ui + ui ∂̆2σi − ξ i ∂̆4σi − σ i∂̆4ξi

)
,

Δ̆1,34 = 1

2

(
ui∂̆1σi − σ i ∂̆1ui

)+ 1

2

(
πi∂̆3ui + ui∂̆3πi − πi∂̆4σi − σ i ∂̆4πi

)
,

Δ̆2,34 = 1

2

(
ui∂̆2σi − σ i ∂̆2ui

)+ 1

2

(
ξ i ∂̆3ui + ui ∂̆3ξi − ξ i ∂̆4σi − σ i∂̆4ξi

)
,

Δ̆3,34 = ui∂̆3σi − σ i ∂̆4σi, Δ̆4,34 = −σ i∂̆4ui + ui∂̆3ui. (5.114)

In passing to pseudo-Euclidean space, Eqs. (5.114) pass into Eq. (3.150) by virtue
of the orthonormality conditions (3.130) of the proper tetrad πi , ξ i , σ i , ui .

The tensor differential equations (5.45) and (5.46) corresponding to Eqs. (5.112),
in the Riemannian space are written as follows

∇iρπ
i + ρπiMi = 0, ∇iρξ

i + ρξiMi = 0,

∇iρσ
i + ρσ iMi = 0, ∇iρu

i = 0, (5.115)

∇iη − 1

2
εijms

(
πj∇mπs + ξj∇mξs + σj∇mσs − uj∇mus

)+ Ni = 0.

Equations (5.115) in the Riemannian space are obtained from Eqs. (5.45), (5.46) in
pseudo-Euclidean space by replacement of the partial derivative ∂i on the covariant
derivative ∇i and they do not require using of orthonormal bases ea .

It is easy to see that the Christoffel symbols Γ s
ij do not appear in the last equation

in (5.115), and in other equations in (5.115) the Christoffel symbols appear only in
the form of the contraction gijΓ s

ij (if to consider the covariant components of the

vectors πi , ξ i , σ i , ui as unknown functions). Therefore in the harmonic coordinate
systems in which by definition the relation gijΓ s

ij = 0 is fulfilled, the Christoffel
symbols Γ s

ij do not enter into Eqs. (5.115).
Let us consider a symmetric tensor with components Tij , defined in the holo-

nomic basis Эi by the relation6

Tij = 1

4

(
ψ+γi∇jψ + ψ+γj∇iψ − ∇iψ

+ · γjψ − ∇jψ
+ · γiψ

)
. (5.116)

Replacing here the covariant derivative ∇i according to formulas (5.103), we get

Tij = 1

4

[
ψ+γi∂jψ + ψ+γj ∂iψ − ∂iψ

+ · γjψ − ∂jψ
+ · γiψ

+ 1

2
Sm

(
Δi,ksεj

ksm + Δj,ksεi
ksm

) ]
. (5.117)

6For the Dirac equations the components Tij define the Einstein energy-momentum tensor.
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The Ricci rotation coefficients Δi,ks in this expression are defined by scale factors
hi

a of arbitrary orthonormal tetrads ea by the formula (see (2.36)):

Δi,ks = hk
ahs

cΔi,ac = 1

2

[
hi

a
(
∂khsa − ∂shka

)

+ hk
a
(
∂ihsa − ∂shia

)− hs
a
(
∂ihka − ∂khia

)]

Replacing in definition (5.116) the covariant derivatives according to formu-
las (5.105), we obtain an expression of the components Tij in terms of the invariants
of the spinor field ρ, η and the Ricci rotation coefficients Δ̆s,ij , determined by the
proper orthonormal tetrads ĕa of the spinor field ψ by relation (5.106):

Tij = 1

4
ρ

[
−σj∂iη − σi∂jη + 1

2
σm

(
Δ̆i,ksεj

ksm + Δ̆j,ksεi
ksm

)]
. (5.118)

5.8.2 Formalism of the Spin-Coefficients

Consider in the Riemannian space V4 an arbitrary smooth field of the orthonormal
tetrads ea(x

i) connected with the golonomic vector basis Эi by scale factors
ea = hi

aЭi . Let us define the complex null tetrads e◦
a = {liЭi , n

iЭi , m
iЭi , ṁ

iЭi}
whose components of vectors are defined in terms of scale factors of tetrad ea :

√
2 li = hi

4 + hi
3,

√
2mi = hi

1 − ihi
2,

√
2ni = hi

4 − hi
3,

√
2 ṁi = hi

1 + ihi
2.

From these definitions and orthonormality properties of the vectors of the tetrad
ea it follows that the components of the vectors li , ni , mi , ṁi satisfy the equations

ṁim
i = −lin

i = 1,

li l
i = nin

i = mim
i = lim

i = nim
i = 0. (5.119)

Let us define in the Riemannian space invariant differential operators D, Δ, δ, δ̇
by the equalities

D = li∇′
i , Δ = ni∇′

i , δ = mi∇′
i , δ̇ = ṁi∇′

i (5.120)

and a system of spin–coefficients, relating to an arbitrary complex null basis e◦
a .

These spin–coefficients are calculated by formulas (3.152), in which the operators
D, Δ, δ, δ̇ are determined by equalities (5.120). The operator ∇′

i in the definitions
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act only upon the indices relating to the holonomic basis Эi (so that ∇′
iψ = ∂iψ ,

∇′
ihja = ∂ihja − Γ s

ij hsa).
It is easy to show that in the Riemannian space the differential operators ∇′

a =
hi

a∇′
i are connected with operators D, Δ, δ, δ̇ by the relations

∇′
1 = 1√

2

(
δ + δ̇

)
, ∇′

3 = 1√
2

(
D − Δ

)
,

∇′
2 = i√

2

(
δ − δ̇

)
, ∇′

4 = 1√
2

(
D + Δ

)
.

Equations (3.151) expressing the derivatives of the vectors of an arbitrary null
basis e◦

a in terms of the spin–coefficients do not change in passing to the Riemannian
space, if the differential operators D, Δ, δ, δ̇ in these equations are determined by
equalities (5.120); in the same way the Ricci rotation coefficients (5.114) and the
spin–coefficients in the Riemannian space are connected by the same Eqs. (3.153),
as in pseudo-Euclidean space.

For the writing of Eqs. (5.110) in the formalism of the spin–coefficients we
replace in them the Ricci rotation coefficients Δa,bc in terms of the spin–coefficients
by formulas (3.153), and operators ∇′

a in terms of operators D, Δ, δ, δ̇. Assuming
that the Dirac matrices γ a are defined by equalities (3.24) after simple transforma-
tions we get the system of equations

(δ − β + τ )ψ4 − (Δ − μ + γ )ψ3 − i√
2
κ1 =0,

(δ̇ − π + α)ψ3 − (D − ε + �)ψ4 − i√
2
κ2 =0,

(δ − π̇ + α̇)ψ2 + (D − ε̇ + �̇)ψ1 + i√
2
κ3 =0,

(δ̇ − β̇ + τ̇ )ψ1 + (Δ − μ̇ +γ̇ )ψ2 + i√
2
κ4 =0, (5.121)

in which for the spinor components κ = {κA} is introduced the notation

κ =
(
�I + i�aγ

a + i

2
�abγ

ab + ∗
�a

∗
γ a + ∗

�γ 5
)
ψ.

Equations (5.121) are the spinor equations (5.110) in formalism of the spin–
coefficients. The spin–coefficients and operators D, Δ, δ, δ̇ in Eqs. (5.121) are
defined by the arbitrary null tetrads e◦

a .
Let us get now an expression for the tetrad components of the tensor, defined

in the basis Эi by (5.117), in terms of spin–coefficients. The components Tij of
any real symmetric tensor of the second rank can be represented as an expansion in
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vectors of an arbitrary null tetrad e◦
a as follows

Tij = T ◦
00ninj +

(
T ◦

11 − 1

4
T ◦
)
(ni lj + nj li ) +

(
T ◦

11 + 1

4
T ◦
)
(miṁj + mjṁi)

+ T ◦
22li lj − T ◦

01(ṁinj + ṁjni) − T ◦
10(minj + mjni) + T ◦

20mimj

+ T ◦
02ṁiṁj − T ◦

12(liṁj + lj ṁi) − T ◦
21(limj + ljmi). (5.122)

Using Eqs. (5.119), for the coefficients in expansion (5.122) it is easy to find

T ◦
11 − 1

4
T ◦ = linj Tij , T ◦

00 = li lj Tij ,

T ◦
11 + 1

4
T ◦ = miṁjTij , T ◦

02 = Ṫ ◦
20 = mimjTij ,

T ◦
01 = Ṫ ◦

10 = limjTij , T ◦
22 = ninjTij ,

T ◦
12 = Ṫ ◦

21 = nimjTij , T ◦ = Ti
i .

The calculation of these quantities for the tensor with components (5.117) in the
assumption that the invariant spintensors β and γ i are determined by matrices (3.24)
and (3.25), gives the following relations7

T ◦
00 = i√

2

[
ψ̇2Dψ2 − ψ2Dψ̇2 + ψ̇3Dψ3 − ψ3Dψ̇3 + κ̇(ψ̇2ψ1 + ψ̇4ψ3)

− κ(ψ̇1ψ2 + ψ̇3ψ4) + (ε̇ − ε)(ψ̇2ψ2 − ψ̇3ψ3)
]
,

T ◦
10 = i

2
√

2

[
ψ̇2 δ̇ψ2 − ψ2 δ̇ψ̇2 + ψ̇3 δ̇ψ3 − ψ3 δ̇ψ̇3 − ψ̇1Dψ2 + ψ2Dψ̇1

+ ψ̇3Dψ4 − ψ4Dψ̇3 − (� + ε̇ + ε)(ψ̇1ψ2 + ψ̇3ψ4) + σ̇ (ψ̇2ψ1 + ψ̇4ψ3)

+ κ̇(ψ̇4ψ4 − ψ̇1ψ1) + (π + α − β̇)(ψ̇3ψ3 − ψ̇2ψ2)
]
,

T ◦
22 = i√

2

[
ψ̇1Δψ1 − ψ1Δψ̇1 + ψ̇4Δψ4 − ψ4Δψ̇4

+ (
γ̇ − γ

)(
ψ̇4ψ4 − ψ̇1ψ1)+ ν

(
ψ̇2ψ1 + ψ̇4ψ3)− ν̇

(
ψ̇1ψ2 + ψ̇3ψ4)],

T ◦
20 = i√

2

[− ψ̇1 δ̇ψ2 + ψ2 δ̇ψ̇1 + ψ̇3 δ̇ψ4 − ψ4 δ̇ψ̇3

− (α + β̇)(ψ̇1ψ2 + ψ̇3ψ4) + σ̇ (ψ̇4ψ4 − ψ̇1ψ1) + λ(ψ̇3ψ3 − ψ̇2ψ2)
]
,

7In the Riemannian space with the metric signature (−,−,−,+) the spin coefficients enter into
Eq. (5.123), (5.121) with the opposite sign.
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T ◦
12 = i

2
√

2

[
ψ̇1δψ1 − ψ1δψ̇1 − ψ̇2Δψ1 + ψ1Δψ̇2 + ψ̇4δψ4 − ψ4δψ̇4

− ψ3Δψ̇4 + ψ̇4Δψ3 + ν̇(ψ̇2ψ2 − ψ̇3ψ3) − λ̇(ψ̇1ψ2 + ψ̇3ψ4)

+ (α̇ − β − τ )(ψ̇4ψ4 − ψ̇1ψ1) + (μ +γ̇ + γ )(ψ̇2ψ1 + ψ̇4ψ3)
]
,

T ◦
11 + 1

4
Ti

i = i

2
√

2

[− ψ̇2δ̇ψ1 + ψ1δ̇ψ̇2 − ψ̇1δψ2 + ψ2δψ̇1 + ψ̇4 δ̇ψ3

− ψ3 δ̇ψ̇4 + ψ̇3δψ4 − ψ4δψ̇3 − (α̇ + β)(ψ̇1ψ2 + ψ̇3ψ4)

+ (α + β̇)(ψ̇2ψ1 + ψ̇4ψ3) + (�̇ − �)(ψ̇4ψ4 − ψ̇1ψ1)

+ (μ̇ − μ)(ψ̇2ψ2 − ψ̇3ψ3)
]
,

T ◦
11 − 1

4
Ti

i = i

2
√

2

[
ψ̇1Dψ1 − ψ1Dψ̇1 + ψ̇2Δψ2 − ψ2Δψ̇2 + ψ̇3Δψ3

− ψ3Δψ̇3 + ψ̇4Dψ4 − ψ4Dψ̇4 + (τ̇ + π)(ψ̇2ψ1 + ψ̇4ψ3)

− (τ + π̇)(ψ̇1ψ2 + ψ̇3ψ4) + (ε̇ − ε)(ψ̇4ψ4 − ψ̇1ψ1)

+ (γ̇ − γ )(ψ̇2ψ2 − ψ̇3ψ3)
]
. (5.123)

The spin–coefficients and operators D, Δ, δ, δ̇ in equalities (5.123) are defined by
arbitrary null tetrads e◦

a .
When using Eqs. (5.121), (5.123) in the formalism of the spin-coefficients it is

also necessary to specify a gauge of the null tetrads e◦
a(x

i). As the gauge of tetrads
e◦
a(x

i) one can accept that tetrads e◦
a(x

i) coincide with the proper null tetrads ĕ◦
a(x

i),
which are connected with the proper orthonormal tetrads of the spinor field ψ(xi)

by the algebraic equalities
√

2 li = ui + σ i,
√

2 mi = πi − iξ i ,

√
2ni = ui − σ i,

√
2 ṁi = πi + iξ i .

If we take as tetrads e◦
a(x

i) in Eqs. (5.121) the proper null tetrads ĕ◦
a(x

i), then
Eqs. (5.121) take the following form (for simplicity we write out here the equations
at κA = mψA,m = const, i.e., for the Dirac equation) [93]

δG = β − τ,

δ̇G = π − α,

DG = ε − � − im√
2
eiη,

ΔG = μ − γ + im√
2
eiη, (5.124)
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where G is the complex invariant of the spinor field

G = 1

2
(lnρ − iη),

and the spin–coefficients are defined by the proper null basis ĕ◦
a(x

i).
When using the gauge e◦

a(x
i) = ĕ◦

a(x
i), definitions (5.123) are also considerable

simplified and take the form

T ◦
00 = ρ

2
√

2
[−Dη + i(ε̇ − ε)],

T ◦
11 = ρ

4
√

2
[Dη − Δη + i(ε̇ − ε +γ̇ − γ )],

T ◦
22 = ρ

2
√

2
[Δη + i(γ̇ − γ )],

T ◦
01 = Ṫ ◦

10 = ρ

4
√

2
[−δη + i(−κ − β + α̇ + π̇ )],

T ◦
02 = Ṫ ◦

20 = iρ

2
√

2
(−σ + λ̇),

T ◦
12 = T ◦

21 = ρ

4
√

2
[δη + i(−β − τ + α̇ + ν̇)],

T ◦ = Ti
i . (5.125)

Equations (5.124) and (5.125) can be obtained from Eqs. (5.112) and (5.118),
replacing in them the Ricci rotation coefficients of proper orthonormal bases in
terms of the spin-coefficients of the proper null basis by formulas (3.153).

The spin-coefficients and the Ricci rotation coefficients are connected by lin-
ear equalities (3.153), therefore Eqs. (5.112), (5.118) and (5.124), (5.125) in the
complexity are identical. However, the use of Eqs. (5.112), (5.118) seems to be
more preferable, since these equations have compact invariant and comprehensible
writing, unlike corresponding to them Eqs. (5.124), (5.125) in the formalism of the
spin-coefficients.

In general relativity the functions gij (x
s) are the desired unknown functions.

Therefore the components of the tetrad vectors πi , ξi , σi , ui (and li , ni , mi , ṁi)
must be considered as arbitrary functions of the variables xi , since in this case the
orthonormality conditions are fulfilled due to definition of the components of the
metric tensor

gij = πiπj + ξiξj + σiσj − uiuj = −linj − lj ni + miṁj + mjṁi.
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5.8.3 Weyl Equations in the Riemannian Space

Let ψ be the four-component spinor field in the Riemannian space V4, specified in

spinbasis
∗
εA by the components

ψ =
∥
∥
∥∥
ξ

η

∥
∥
∥∥ , (5.126)

where ξ , η are the two-component spinor fields in the space V4. Using expres-
sions (3.94) for the matrices γ ab, formula (5.103) for the covariant derivative of
the spinor field ψ can be represented in the form

∇iψ = ∂iψ − 1

4
Δi,bcγ

bcψ =
∥
∥
∥
∥
∂iξ

∂iη

∥
∥
∥
∥− 1

4
Δi,αβ

∥
∥
∥
∥
σ [ασβ]ξ
σ [ασβ]η

∥
∥
∥
∥− 1

2
Δi,4α

∥
∥
∥
∥
−σαξ

σαη

∥
∥
∥
∥ .

From this it follows

∇i ξ = ∂iξ − 1

4
Δi,αβσ

[ασβ]ξ + 1

2
Δi,4ασ

αξ,

∇iη = ∂iη − 1

4
Δi,αβσ

[ασβ]η − 1

2
Δi,4ασ

αη.

Taking into account definition (3.100) of the spintensors σ ij = ‖σB
A
ij‖, formulas

for ∇i ξ and ∇iη can be written down in the matrix form

∇iξ = ∂iξ + i

4
Δi,jkσ

jkξ,

∇iη = ∂iη + i

4
Δi,jk(σ̇

jk)T η, (5.127)

or, in the component form

∇iξ
B = ∂iξ

B + i

4
Δi,jkσ

B
A
jkξA,

∇iηȦ = ∂iηȦ + i

4
Δi,jkσ

Ḃ
Ȧ
jkηḂ .

The quantities ∇i ξ
B , ∇iηȦ by definition are called the covariant derivatives of

the two-component spinor fields ξ , η. The Ricci rotation coefficients Δi,jk in these
equations are defined by the arbitrary orthonormal bases ea(x

i).
Formulas (3.205) expressing derivatives of the components of semispinors in

terms of the Ricci rotation coefficients of the proper tetrad and invariants ρ, η in the
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Riemannian space are written as follows

∇sξ
B = 1

2
ξB∇s(ln ρ + iη) + i

4
Δ̆s,ijσ

B
A
ij ξA,

∇sηȦ = 1

2
ηȦ∇s (lnρ − iη) + i

4
Δ̆s,ij σ̇

B
A
ij ηḂ . (5.128)

The Ricci rotation coefficients Δ̆s,ij in Eqs. (5.128) are defined by the proper
tetrad of the spinor field (5.126) by formula (5.106).

The Weyl equations (5.81) and the symmetric components of the Einstein energy-
momentum tensor of the spinor field ξ in the Riemannian space are written in the
following way

σ i

ḂA
∇iξ

A = 0, (5.129)

Tij = i

4
σḂAj

(
ξ̇B∇i ξ

A − ξA∇i ξ̇
B
)

+ i

4
σḂAi

(
ξ̇B∇j ξ

A − ξA∇j ξ̇
B
)
.

The Weyl equations (5.80) and the symmetric components of the Einstein energy-
momentum tensor of the spinor field η in the Riemannian space V4 have the form

σBȦi∇iηȦ = 0, (5.130)

Tij = i

4
σBȦ
j

(
η̇Ḃ∇iηȦ − ηȦ∇i η̇Ḃ

)+ i

4
σBȦ
i

(
η̇Ḃ∇j ηȦ − ηȦ∇j η̇Ḃ

)
.

Replacing in the first equation in (5.129) the covariant derivative ∇iξ
B by

formula (5.127) and using formulas (3.105) for the contraction of spintensors σ i

and σjk , the Weyl equations for the spinor field ξ can be transformed to the form

σ i

ḂA

[
∂iξ

A + 1

2

(
Δj,i

j + i

2
εijmnΔ

j,mn

)
ξA

]
= 0. (5.131)

In the same way the Weyl equations for the dotted components of the spinor ηȦ

are written down in the form:

σBȦi

[
∂iηȦ + 1

2

(
Δj,i

j − i

2
εijmnΔ

j,mn

)
ηȦ

]
= 0. (5.132)

The tensor equations, corresponding to the Weyl equations in the Riemannian
space, are got by the replacement in Eqs. (5.90), (5.91), and (5.95) of the partial
derivatives by covariant ones:

Cmn∇jCi
j + Cm

j∇iC
nj = 0,

j s∇jC
qj = jj∇qCjs,

j s∇qj
k − jk∇qj

s = 1

2

(
Ċsk∇jCq

j + Csk∇j Ċq
j
)
.
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The Weyl equations and the components of the Einstein energy-momentum
tensor (5.129), (5.130) in the Riemannian space in the formalism of the spin–
coefficients in an arbitrary null basis e◦

a are obtained from Eqs. (5.121) if to put
in them, respectively, ψ1 = ψ2 =0, ψ3 = η1̇, ψ4 = η2̇, κA = 0 and ψ1 = ξ1,
ψ2 = ξ2, ψ3 = ψ4 =0, κA = 0. Thus, it is possible to get that the following
equations correspond to the Weyl equations for the field ξ :

(
δ − π̇ + α̇

)
ξ2 + (

D − ε̇ + �̇
)
ξ1 = 0,

(
δ̇ − β̇ + τ̇

)
ξ1 + (

Δ − μ̇ +γ̇
)
ξ2 = 0,

The components of the Einstein energy-momentum tensor in an arbitrary null basis
e◦
a have the form

T ◦
00 = i√

2

[
ξ̇2Dξ2 − ξ2Dξ̇2 + κ̇ ξ̇2ξ1 − κξ̇1ξ2 + (

ε̇ − ε
)
ξ̇2ξ2],

T ◦
10 = i

2
√

2

[
ξ̇2δ̇ξ2 − ξ2δ̇ξ̇2 − ξ̇1Dξ2 + ξ2Dξ̇1 − (

� + ε̇ + ε
)
ξ̇1ξ2 + σ̇ ξ̇2ξ1

− κ̇ ξ̇1ξ1 − (
π + α − β̇

)
ξ̇2ξ2],

T ◦
22 = i√

2

[
ξ̇1Δξ1 − ξ1Δξ̇1 − (

γ̇ − γ
)
ξ̇1ξ1 + νξ̇2ξ1 − ν̇ξ̇1ξ2],

T ◦
20 = i√

2

[− ξ̇1δ̇ξ2 + ξ2δ̇ξ̇1 − (
α + β̇

)
ξ̇1ξ2 − σ̇ ξ̇1ξ1 − λξ̇2ξ2],

T ◦
12 = i

2
√

2

[
ξ̇1δξ1 − ξ1δξ̇1 − ξ̇2Δξ1 + ξ1Δξ̇2 + (

μ +γ̇ + γ
)
ξ̇2ξ1

− λ̇ξ̇1ξ2 − (
α̇ − β − τ

)
ξ̇1ξ1 + ν̇ξ̇2ξ2],

T ◦
11 + 1

4
Ti

i = i

2
√

2

[− ξ̇2δ̇ξ1 + ξ1δ̇ξ̇2 − ξ̇1δξ2 + ξ2δξ̇1 − (
α̇ + β

)
ξ̇1ξ2

+ (
α + β̇

)
ξ̇2ξ1 − (

�̇ − �
)
ξ̇1ξ1 + (

μ̇ − μ
)
ξ̇2ξ2],

T ◦
11 − 1

4
Ti

i = i

2
√

2

[
ξ̇1Dξ1 − ξ1Dξ̇1 + ξ̇2Δξ2 − ξ2Δξ̇2 + (

τ̇ + π
)
ξ̇2ξ1

− (
τ + π̇

)
ξ̇1ξ2 − (

ε̇ − ε
)
ξ̇1ξ1 + (

γ̇ − γ
)
ξ̇2ξ2].

Here the differentiation operators D, Δ, δ, δ̇ are defined according to (5.120).
Let us write out also the Weyl equations for the spinor field η in an arbitrary null

tetrad e◦
a :

(δ − β + τ )η2̇ − (Δ − μ + γ )η1̇ =0,

(δ̇ − π + α)η1̇ − (D − ε + �)η2̇ =0
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and the components of the Einstein energy-momentum tensor (5.130) corresponding
to them in the null tetrad e◦

a:

T ◦
00 = i√

2

[
η̇1̇Dη1̇ − η1̇Dη̇1̇ + κ̇ η̇2̇η1̇ − κη̇1̇η2̇ − (

ε̇ − ε
)
η̇1̇η1̇

]
,

T ◦
10 = i

2
√

2

[
η̇1̇δ̇η1̇ − η1̇δ̇η̇1̇ + η̇1̇Dη2̇ − η2̇Dη̇1̇ − (

� + ε̇ + ε
)
η̇1̇η2̇ + σ̇ η̇2̇η1̇

+ κ̇η̇2̇η2̇ + (
π + α − β̇

)
η̇1̇η1̇

]
,

T ◦
22 = i√

2

[
η̇2̇Δη2̇ − η2̇Δη̇2̇ + (

γ̇ − γ
)
η̇2̇η2̇ + νη̇2̇η1̇ − ν̇η̇1̇η2̇

]
,

T ◦
20 = i√

2

[
η̇1̇δ̇η2̇ − η2̇δ̇η̇1̇ − (

α + β̇
)
η̇1̇η2̇ + σ̇ η̇2̇η2̇ + λη̇1̇η1̇

]
,

T ◦
12 = i

2
√

2

[
η̇2̇δη2̇ − η2̇δη̇2̇ − η1̇Δη̇2̇ + η̇2̇Δη1̇ + (

μ +γ̇ + γ
)
η̇2̇η1̇

− λ̇η̇1̇η2̇ + (
α̇ − β − τ

)
η̇2̇η2̇ − ν̇η̇1̇η1̇

]
,

T ◦
11 + 1

4
Ti

i = i

2
√

2

[
η̇2̇δ̇η1̇ − η1̇δ̇η̇2̇ + η̇1̇δη2̇ − η2̇δη̇1̇ − (

α̇ + β
)
η̇1̇η2̇

+ (
α + β̇

)
η̇2̇η1̇ + (

�̇ − �
)
η̇2̇η2̇ − (

μ̇ − μ
)
η̇1̇η1̇

]
,

T ◦
11 − 1

4
Ti

i = i

2
√

2

[
η̇1̇Δη1̇ − η1̇Δη̇1̇ + η̇2̇Dη2̇ − η2̇Dη̇2̇ + (

τ̇ + π
)
η̇2̇η1̇

− (
τ + π̇

)
η̇1̇η2̇ + (

ε̇ − ε
)
η̇2̇η2̇ − (

γ̇ − γ
)
η̇1̇η1̇

]
.

We obtain now the tensor formulation of the Weyl equations and an expression
for the Einstein energy-momentum tensor (5.129), (5.130) in the components
of the vectors of the proper tetrad ĕa determined by the two-component spinor
field (see Sect. 3.4, Chap. 3). We consider at first equation (5.130) for the spinor
field η. Let us replace the derivative ∇iηȦ in the Weyl equations (5.130) by
formula (5.128). For simplicity and for definiteness we accept that the invariants
ρ, η in formulas (3.154), (3.156) and, therefore, in formula (5.128), are defined as
follows

ρ = √
2, η = const. (5.133)

In this case formula (3.156) for the components of the vectors of the proper null
tetrad ĕ◦

a pass into the following equalities

li = −σ i

ḂA
ηḂ η̇Ȧ, ni = −σ i

ḂA
ξ̇BξA,

mi = −σ i

ḂA
ηḂξA, (5.134)
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while formula (5.128) for the derivative ∇sηȦ takes the form

∇sηȦ = i

4
Δ̆s,ij σ̇

B
A
ij ηḂ . (5.135)

Replacing the derivative ∇sηȦ in Eq. (5.130) by formula (5.135) and making
transformations with the aid of equality (3.105), we get (in the orthonormal tetrad
ea)

σAḊa

(
Δ̆b,a

b − i

2
εabcdΔ̆

b,cd

)
ηḊ = 0.

Contraction of this equation with components of spinors η̇Ȧ and ξA gives the
equations8

laΔ̆b,a
b = 0, εabcd laΔ̆bcd = 0,

ma

(
Δ̆b,a

b − i

2
εabcdΔ̆

b,cd

)
= 0, (5.136)

while for the component of the Einstein energy-momentum tensor Tab we get the
following expression

Tab = 1

8
le
(
εacdeΔ̆b,

cd + εbcdeΔ̆a,
cd
)
. (5.137)

From definitions (5.82) and (5.134) it follows that in this case the components of the
vector li coincide with the components j i of the current vector of the field ηȦ. From
Eqs. (3.149) and (3.145) it follows that the first equation in (5.136) is the continuity
equation for current vector

∇i l
i = 0.

In the same way, it is obtained that from the Weyl equations (5.129) for the spinor
field ξ provided (5.133) it follows

σa

ḂA

(
Δ̆b,a

b + i

2
εabcdΔ̆

b,cd

)
ξA = 0

8The field of the spinor ξ is used here only to determine the tetrad ĕ◦
a and is not related to the Weyl

equation (5.129).
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and

naΔ̆b,a
b = 0, εabcdnaΔ̆b,cd = 0,

ma

(
Δ̆b,a

b + i

2
εabcdΔ̆

b,cd

)
= 0, (5.138)

The components of the Einstein energy-momentum tensor in this case are defined
by the relation

Tab = −1

8
ne
(
εacdeΔ̆b,

cd + εbcdeΔ̆a,
cd
)
. (5.139)

For the Weyl equations (5.129) the components ni coincide with components j i of
the current vector of the field ξA, and the first equation in (5.138) is the continuity
equation

∇in
i = 0

To write the Weyl equations and the Einstein energy-momentum tensor in the
proper null tetrads ĕ◦

a provided (5.133), we must replace in Eqs. (5.136), (5.137)
and (5.138), (5.139) the Ricci rotation coefficients in terms of the spin–coefficients
by formulas (3.153). As a result, the Weyl equations for the spinor field ξ in the
proper null tetrad are written in the form

π = α, μ = γ, (5.140)

while the components of the Einstein energy-momentum tensor in the form

T̆ ◦
00 = i

2
(ε̇ − ε), T̆ ◦

11 = i

4
(γ̇ − γ ),

T̆ ◦
01 = i

4
(α̇ − β + π̇), T̆ ◦

10 = i

4
(β̇ − α − π),

T̆ ◦
12 = i

4
ν̇, T̆ ◦

21 = − i

4
ν,

T̆ ◦
22 = 0, T̆ ◦

02 = i

2
λ̇,

T̆ ◦
20 = − i

2
λ, Ti

i = i

2
(μ̇ − μ + γ −γ̇ ) = 0. (5.141)

The Weyl equations for the spinor field η in the proper null bases ĕ◦
a provided (5.133)

are obtained from Eqs. (5.136) and have the form

ε = �, β = τ. (5.142)
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The components of the Einstein energy-momentum tensor in the proper null tetrads
ĕ◦
a for the spinor field ξ are determined by the relations:

T̆ ◦
00 = 0, T̆ ◦

11 = i

4
(ε̇ − ε),

T̆ ◦
01 = − i

4
κ, T̆ ◦

10 = i

4
κ̇,

T̆ ◦
12 = i

4
(α̇ − β − τ ), T̆ ◦

21 = i

4
(β̇ − α + τ̇ ),

T̆ ◦
22 = i

2
(γ̇ − γ ), T̆ ◦

20 = i

2
σ̇ ,

T̆ ◦
02 = − i

2
σ, Ti

i = i

2
(ρ̇ − ρ + ε − ε̇) = 0. (5.143)

Within the framework of general relativity (GR) the Weyl equations in the tensor
formulation contain at four unknown functions less, than the Weyl equations in their
classical spinor formulation. This is related to the fact that for definition of the spinor
fields in the Riemannian space a system of tetrads ea (or e◦

a) is introduced, which
is defined up to the arbitrary Lorentz transformations depending on six arbitrary
functions. At the tensor formulation of the Weyl equations a special system of tetrads
ĕa (or ĕ◦

a) is used as ea (e◦
a), which is defined by the spinor field only to within two

real functions. Besides, within the formalism of the spin–coefficients, when spin–
coefficients are considered as the arbitrary functions, the Weyl equations (5.131)
or (5.132) (nonlinear differential equations in partial derivatives) are replaced in the
theory proposed here by the linear algebraic equations (5.140) or (5.142). With these
two circumstances is connected essential simplification of the theory of the massless
spin 1/2 field.

It is obvious that all tensor systems of the equations in the components ĕa , e◦
a ,

Cij , j i corresponding to the Weyl equations, of course, are equivalent; however,
use of various systems of unknown functions leads to tensor equations of varying
complexity. Equations (5.140), (5.141) or (5.138), (5.139) and (5.142), (5.143)
or (5.136), (5.137), seemingly, are most convenient for use in GR.

5.9 The Spinor Differential Equations in Three-Dimensional
Euclidean Space

Let ψ be the first rank spinor in the three-dimensional Euclidean space E0
3 referred

to an orthonormal basis Эα . Let us assume that the spinor components ψ are
determined as function of some scalar parameter s. Consider a differential spinor
equation of the form

d

ds
ψ = 1

2
(Rα + iHα)σ

αψ + 1

2
(Qα + iNα)σ

αψ̄, (5.144)
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in which the real components Qα , Nα , Rα , and Hα, calculated in the basis Эα ,
determine three-dimensional vectors in the space E0

3 ; σα are the two-dimensional
Pauli matrices; ψ̄ is the column of the contravariant conjugate spinor components
ψ+A, A = 1, 2.

Let us obtain a writing of the spinor equations (5.144) in the form of equivalent
tensor equations. For this purpose we replace the derivative dψ/ds in Eqs. (5.144)
by formula (4.78). We obtain

1

ρ

dρ

ds
ψ = [

Rα + i(Hα + Ωα)
]
σαψ + (Qα + iNα)σ

αψ̄. (5.145)

Here the vector components Ωα are determined by the relation

Ωα = 1

2
εαβη

(
πβ

d

ds
πη + ξβ

d

ds
ξη + nβ

d

ds
nη

)
.

Since the spintensors σα are invariant under the orthogonal transformations of the
basis of the space E0

3 , Eq. (5.145) in the proper basis ĕa can be written as follows

1

ρ

dρ

ds
ψ̆ = [

R̆a + i(H̆a + Ω̆a)
]
σaψ̆ + (Q̆a + iN̆a)σ

a ˘̄ψ, (5.146)

where the symbol ˘ means that the components noted by it are calculated
in the proper basis ĕa determined by the equality (4.42). Taking into account
definitions (4.45) of the components ψ̆ , Eq. (5.146) can be rewritten in the form
of two complex equations

1√
ρ

dρ

ds
= (Q̆1 + iN̆1)

√
ρ − i(Q̆2 + iN̆2)

√
ρ + [R̆3 + i(Ω̆3 + H̆3)]√ρ,

(5.147)

1√
ρ

dρ

ds
= [R̆1 + i(Ω̆1 + H̆1)]√ρ + i[R̆2 + i(Ω̆2 + H̆2)]√ρ − (Q̆3 + iN̆3)

√
ρ.

Separating in (5.147) the real and imaginary parts, we find

1

ρ

dρ

ds
= R̆3 + Q̆1 + N̆2,

Ω̆3 + H̆3 + N̆1 − Q̆2 = 0,

Ω̆2 + H̆2 + Q̆3 − R̆1 = 0,

Ω̆1 + H̆1 − N̆3 + R̆2 = 0. (5.148)
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The first equation in (5.148) can be written in the form of a scalar equation

1

ρ

dρ

ds
= πλQλ + ξλNλ + nλRλ. (5.149)

When transforming the first equation in (5.148) to the form (5.149) we must take
into account the equalities

Q̆a = h̆λ
aQλ, N̆a = h̆λ

aNλ, R̆a = h̆λ
aRλ,

in which the scale factors h̆λ
a are determined according to (4.44). Thus, for example,

for Q̆a we have

Q̆1 = πλQλ, Q̆2 = ξλQλ, Q̆3 = nλQλ.

Bearing in mind that the equalities are fulfilled

π̆a = (1, 0, 0), ξ̆a = (0, 1, 0), n̆a = (0, 0, 1),

three last equations in (5.148) can be written as a single vector equation

Ω̆a = −H̆ a + εabc
(
π̆bQ̆c + ξ̆bN̆c + n̆bR̆c

)
.

In an arbitrary orthonormal basis Эα of the space E0
3 this equation is written as

follows

Ωα = −Hα + εαβλ
(
πβQλ + ξβNλ + nβRλ

)
. (5.150)

Thus, the spinor equations (5.144) can be represented in the form of system of
the invariant tensor equations (5.149) and (5.150).

Equations (5.149) and (5.150) can be obtained as well without using bases ĕa ,
by contracting equation (5.145) with components of spinors ψ , ψ̄ and performing
simple algebraic transformations. Such way, perhaps, is simpler, but the derivation
used here has the great generality since it can be applied to the more complicated
spinor equations.

Contracting equation (5.150) with respect to the index α with components
of tensors εαβλπ

λ, εαβλξ
λ and εαβλn

λ, taking into account the orthonormality
conditions of the vectors with components πα , ξα , nα , we find equations for the
derivatives of the components πα, ξα , nα [90]:

dρπα

ds
= ρQα + ρεαβλ

(
πβHλ + ξβRλ − nβNλ

)
,

dρξα

ds
= ρNα + ρεαβλ

(− πβRλ + ξβHλ + nβQλ

)
,

dρnα

ds
= ρRα + ρεαβλ

(
πβNλ − ξβQλ + nβHλ

)
. (5.151)
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Let us introduce the notations

Tα
1 = Qα, Tα

2 = Nα, Tα
3 = Rα. (5.152)

Then Eqs. (5.149) and (5.150) can be rewritten in the form

d lnρ

ds
= Tα

bh̆α
b,

Ωα = −Hα + εαβλgabh̆β
aTλ

b, (5.153)

where gab = diag (1,1,1) are the components of the metric tensor of the Euclidean
space E0

3 . The scale factors h̆β
a are determined by matrix (4.44).

Equation (5.151) in notations (5.152) take the form

1

ρ

d

ds

(
ρh̆θ

a
) = Tθ

a + εθβλ
(
εabch̆β

bT
λ
c + h̆βaHλ

)
. (5.154)

Equations (5.153) and (5.154) are invariant under the rotations of the basis Эα

and rotations of the basis ĕa (which do not depend on parameter s).

5.10 Spinor Form of Some Equations of Mechanics

5.10.1 The Frenet-Serret Equations

We consider in the three-dimensional point Euclidean space a continuous differen-
tiable curve � with the arch length s. We introduce at each point of � a trihedral
consisting of the unit tangent vector with components ξα , the unit normal vector
with components nα and the unit binormal vector with components πα . It is well
known that the components of vectors of this trihedral satisfy the Frenet-Serret
equations

dξα

ds
= knα,

dnα

ds
= −kξα + �πα,

dπα

ds
= −�ξα, (5.155)

where k is the curvature and � is the torsion of the curve �.
Let us consider the particular case of the spinor equations (5.144) under the

conditions

Qα = Nα = Rα = 0, Hα = −kπα − �ξα.

The spinor equations (5.144) corresponding to the case under consideration can
be written as follows

d

ds
ψ = 1

2
(� − ik)ψ̄. (5.156)



5.10 Spinor Form of Some Equations of Mechanics 279

When transforming equations (5.144) to the form (5.156) we must take into account
the identities

πασ
αψ = ψ̄, ξασ

αψ = iψ̄,

which follow from the definition of the vector components πα, ξα . Equation (5.149),
corresponding to the spinor equations (5.156), is written in the form

dρ

ds
= 0.

Thus, it follows from Eqs. (5.156)

ρ = ψ̇1ψ1 + ψ̇2ψ2 = const. (5.157)

It is easy to see that Eq. (5.151) corresponding to the spinor equations (5.156), coin-
cide with the Frenet-Serret equations (5.155) due to the equation ρ = const. Thus,
the Frenet-Serret equations are a consequence of the spinor equations (5.156).9

Let us put now

� − ik = 2R exp iF, dτ = R ds.

Then from Eqs. (5.156) it follows the linear second order equation for functions ψ:

ψ ′′ − iF ′ψ ′ + ψ = 0, (5.158)

where the prime denotes the derivative with respect to τ . The replacement of
unknown functions

ψ = η exp(iF/2)

transforms Eq. (5.158) to the standard form

η′′ + Aη = 0,

where

A = i

2
F ′′ + 1

4
(F ′)2 + 1.

Thus, the integration of the Frenet-Serret equations (5.155) for nine functionsπα ,
ξα , nα connected by the orthonormality conditions are reduced to the integration of

9The spinor equations of another form from which the Frenet-Serret equations also follow, were
considered in [68].
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the spinor equations (5.156) or (5.158) with two complex functions ψ , connected
by the single condition (5.157).

5.10.2 Equations for the Rotating Rigid Body with the Fixed
Point

The kinematic equations describing the rotating rigid body with the fixed point, have
the form

dπ

dt
= Ω × π,

dξ

dt
= Ω × ξ ,

dn

dt
= Ω × n, (5.159)

where t is time, the vector Ω is the angular velocity of the rotation of the rigid body;
the vectors π , ξ , n form the orthonormal basis fixed in the body. It is easy to see that
Eqs. (5.159) are obtained from Eqs. (5.151), (5.149) under the conditions

s = t, Hα = −Ωα, Qα = Nα = Rα = 0.

Therefore tensor equations (5.159) are the consequence of the spinor equation

d

dt
ψ = − i

2
Ωασαψ. (5.160)

Let us put

dτ = 1

2
R dt, Ω1 + iΩ2 = R exp iω, G = ω −

∫
Ω3 dt.

Then replacement of unknown functions

ψ1 = η1 exp

(
− i

2

∫
Ω3 dt

)
, ψ2 = η2 exp

(
i

2

∫
Ω3 dt

)

transforms Eqs. (5.160) to the form

dη1

dτ
= −iη2 exp(−iG),

dη2

dτ
= −iη1 exp(iG), (5.161)

whence the equations follow (the prime ′ denotes the derivative with respect to τ ).

η′′
1 + iG′η′

1 + η1 = 0, η′′
2 − iG′η′

2 + η2 = 0. (5.162)
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Equation (5.149), corresponding to the spinor equations (5.160), is written in the
form dρ/dt = 0 and therefore

ρ = ψ̇1ψ1 + ψ̇2ψ2 ≡ η̇1η1 + η̇2η2 = const. (5.163)

Thus, and in this case nine equations in (5.159) for the nine unknown functions
πα , ξα , nα with the given functions Ωα are reduced to Eqs. (5.161) or (5.162) for
two complex functions η1 and η2 with constraint (5.163).

5.10.3 Landau-Lifshitz Equations with the Relaxation Term

The Landau-Lifshitz equations with the relaxation term have the form

d

dt
Mα = gεαβλMβ

∗
Hλ + Rα. (5.164)

Here Mα are the components of the volume density of magnetization vector of

the continuous medium,
∗
Hλ are the components of the effective strength vector of

the magnetic field. g is constant, t is time. Equation (5.164) is used for a description
of the magnetization of a continuous medium in the magnetic field.

Let us consider the spinor equation [82]

d

dt
ψ = i

2

(
g

∗
H

α

− i

M
Rα

)
σαψ, (5.165)

where M = (MαM
α)1/2. We parametrize the vector components Mα by the relation

Mα = −σα
BAψ

+BψA. Then from (5.151) we get that Eq. (5.164) is the consequence
of Eqs. (5.165). In some cases the spinor equation (5.165) is integrated more simply
than the tensor equation (5.164).

5.11 Spinor Equations in the Orthogonal Coordinate
Systems

In problems possessing the certain spatial symmetry it is convenient to use special
curvilinear coordinate systems, in which due to the symmetry of the problem the
required functions do not depend on one or several coordinates. In applications,
orthogonal coordinate systems are especially often used, in which all coordinate
lines are orthogonal among themselves. In an arbitrary curvilinear coordinate sys-
tem of the Minkowski space and in the Riemannian space the spinor equations (5.18)



282 5 Tensor Forms of Spinor Equations

are written in the form

γ i∇iψ +
(
�I + i�jγ

j + i

2
�jsγ

js + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0, (5.166)

where ∇i is the symbol of the covariant derivative determined by formula (5.103). In
this section we give the writing of Eqs. (5.166) in an arbitrary orthogonal coordinate
system and, in particular, in the cylindrical and spherical coordinate system.

Let yi be the variables of the orthogonal coordinate system in the Minkowski
space with the covariant vector basis Эi . By definition, all vectors Эi are orthogonal
to each other. It is obvious that in the orthogonal coordinate system the covariant
components gij and contravariant components gij of the metric tensor of the
Minkowski space are determined by diagonal matrices

gij =

∥
∥
∥
∥∥
∥
∥
∥

g11 0 0 0
0 g22 0 0
0 0 g33 0
0 0 0 g44

∥
∥
∥
∥∥
∥
∥
∥

, gij =

∥
∥
∥
∥∥
∥
∥
∥

g11 0 0 0
0 g22 0 0
0 0 g33 0
0 0 0 g44

∥
∥
∥
∥∥
∥
∥
∥

.

Since the matrix ‖gij ‖ of the contravariant components of the metric tensor is
inverse to the matrix ‖gij ‖ of the covariant components, we have

g11 = 1

g11
, g22 = 1

g22
, g33 = 1

g33
, g44 = 1

g44
.

The Christoffel symbols in the considered orthogonal coordinate system with
variables yi according to (2.2) are determined by the equalities

Γ
j

jk = 1

2
gjj ∂kgjj , Γ

j

kk = −1

2
gjj ∂jgkk,

Γ
j
jj = 1

2
gjj ∂jgjj , Γ

j
ik = 0, for i �= j �= k. (5.167)

In formulas (5.167) there is no summation over the indices j and k.
At each point of the Minkowski space, in addition to the orthogonal vector

basis Эi , we introduce an orthonormal basis with vectors ea directed along the
corresponding vectors Эi . Since the moduli of the basis vectors Эi are equal to
|gii |1/2, it is obvious that the introduced vectors ea are connected with the vectors
Эi in the following way

Э1 = √
g11 e1, Э2 = √

g22 e2,

Э3 = √
g33 e3, Э4 = √−g44 e4.
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Therefore the scale factors hi
a for the introduced orthonormal basis ea have the

form

hi
a = (

Эi , e
a
) =

∥
∥∥
∥
∥
∥
∥
∥

√
g11 0 0 0
0

√
g22 0 0

0 0
√
g33 0

0 0 0
√−g44

∥
∥∥
∥
∥
∥
∥
∥

. (5.168)

The matrix of the scale factors ‖hj
a‖ is inverse of the matrix ‖hj

a‖

hj
a = (

ЭI , ea
) =

∥∥
∥
∥
∥
∥∥
∥

(g11)
−1/2 0 0 0

0 (g22)
−1/2 0 0

0 0 (g33)
−1/2 0

0 0 0 (−g44)
−1/2

∥∥
∥
∥
∥
∥∥
∥

. (5.169)

The components of the vectors and tensors calculated in the orthonormal basis
ea are usually called the physical components. Note that the physical components
of vectors or tensors have the same dimension, unlike their components, calculated
in the orthogonal (or in others curvilinear) coordinate systems.

Using expressions (5.167) for the Christoffel symbols and expressions (5.168),
(5.169) for the scale factors, it is possible to calculate the Ricci rotation coefficients
Δc,ab by formulas (2.38):

Δc,ab = 0 for c �= a, c �= b,

Δ4,a4 = −Δ4,4a = − 1√−g44gaa

∂a
√−g44,

Δa,4a = −Δa,a4 = 1√−g44gaa

∂4
√
gaa,

Δa,ba = −Δa,ab = 1√
gbbgaa

∂b
√
gaa. (5.170)

In formulas (5.170) the indices a, b take values 1, 2, 3. In formulas (5.170) there
is no summation over the indices a and b.

From formulas (5.170) it follows that the result of alternation over all indices of
the Ricci rotation coefficients for the orthogonal coordinate systems is equal to zero

Δ[c,ab] ≡ 1

3
(Δc,ab + Δa,bc + Δb,ca) = 0. (5.171)
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Let us give also expressions for the spinor connection coefficients Γi in the
orthogonal coordinate systems (see (5.101))

Γ1 = 1

2

(
− 1√

g22
∂2

√
g11 γ 12 + 1√

g33
∂3

√
g11 γ 31 − 1√−g44

∂4
√
g11 γ 14

)
,

Γ2 = 1

2

(
1√
g11

∂1
√
g22 γ 12 − 1√

g33
∂3

√
g22 γ 23 − 1√−g44

∂4
√
g22 γ 24

)
,

Γ3 = 1

2

(
− 1√

g11
∂1

√
g33 γ 31 + 1√

g22
∂2

√
g33 γ 23 − 1√−g44

∂4
√
g33 γ 34

)
,

Γ4 = 1

2

(
− 1√

g11
∂1

√−g44 γ 14 − 1√
g22

∂2
√−g44 γ 24 − 1√

g33
∂3

√−g44 γ 34
)
.

(5.172)

The components of spintensors γ ab in equalities (5.172) are calculated in the
orthonormal bases ea and do not depend on the variables yi .

Equalities (5.172) for the spinor connection coefficients allow to calculate
operator γ i∇i in the spinor equations (5.166). A calculation gives

γ i∇i = γ i∂i + 1

2
√−g

4∑

i=1

√|gii | γ i∂i

( √−g√|gii |
)
. (5.173)

For the components of the spintensors γ i in Eq. (5.173) we have γ i = hi
aγ

a .
Formula (5.173) for operator γ i∇i in an arbitrary orthogonal coordinate system

due to its special form can be obtained without using expression (5.172) for symbols
Γi . Indeed, in an arbitrary curvilinear coordinate system for the operator γ i∇i a
relation is carried out (see (5.109))

γ i∇i = γ i∂i − 1

4
εabcd

∗
γ aΔb,cd + 1

2
Δb,a

bγ a. (5.174)

In an arbitrary orthogonal coordinate system in which Eq. (5.171) is fulfilled,
formula (5.174) takes the form

γ i∇i = γ i∂i + 1

2
Δb,a

bγ a. (5.175)

Taking into account equality (2.39) for the Ricci rotation coefficients, we finally
rewrite formula (5.175) in the form

γ i∇i = γ i∂i + 1

2
√−g

∂j (h
j
a

√−g )γ a (5.176)
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or

γ i∇i = γ i∂i + 1

2
√−g

∂j (γ
j√−g ).

By virtue of definition (5.169) of the scale factors hj
a formulas (5.173)

and (5.176) coincide.
Replacing the operator γ i∇i in Eqs. (5.166) by formula (5.176), we find that

in an arbitrary orthogonal coordinate system with variables yi the spinor equa-
tions (5.166) are written in the following way

γ i∂iψ + 1

2
√−g

∂j (h
j
a

√−g)γ aψ

+
(
�I + i�jγ

j + i

2
�jsγ

js + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0.

Here coefficients hj
a are defined by matrix (5.169).

As an example, let us give the writing of Eqs. (5.166) in the cylindrical and
spherical coordinate system.

5.11.1 Cylindrical Coordinate System in the Pseudo-Euclidean
Space

In the Minkowski space the variables xi of the Cartesian coordinate system are
related to variables y1 = ρ, y2 = ϕ, y3, y4 of the cylindrical coordinate system by
the equalities

x1 = ρ cosϕ, x2 = ρ sin ϕ, x3 = y3, x4 = y4.

The covariant and contravariant components of the metric tensor in the cylindrical
coordinate system are determined by matrices

gij =

∥
∥
∥
∥
∥∥
∥
∥

1 0 0 0
0 ρ2 0 0
0 0 1 0
0 0 0 −1

∥
∥
∥
∥
∥∥
∥
∥

, gij =

∥
∥
∥
∥
∥∥
∥
∥

1 0 0 0
0 ρ−2 0 0
0 0 1 0
0 0 0 −1

∥
∥
∥
∥
∥∥
∥
∥

.

Assuming that vectors ea of the nonholonomic orthonormal coordinate system
are directed along the corresponding vectors Эi of the cylindrical coordinate
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system, for the scale factors hj
a , hi

a we find

hi
a =

∥∥
∥
∥
∥
∥∥
∥

1 0 0 0
0 ρ 0 0
0 0 1 0
0 0 0 1

∥∥
∥
∥
∥
∥∥
∥

, hj
a =

∥∥
∥
∥
∥
∥∥
∥

1 0 0 0
0 ρ−1 0 0
0 0 1 0
0 0 0 1

∥∥
∥
∥
∥
∥∥
∥

.

For the Christoffel symbols of the cylindrical coordinate system we have

Γ 1
22 = −ρ, Γ 2

12 = Γ 2
21 = 1

ρ
. (5.177)

For the introduced orthonormal coordinate system the Ricci rotation coefficients
Δc,ab are calculated by the formulas

Δ2,12 = −Δ2,21 = 1

ρ
. (5.178)

All other components Γ
j
ik and Δc,ab, except specified in equalities (5.177)

and (5.178) are equal to zero. The spinor connection coefficients Γi for the
cylindrical coordinate system are written in the form

Γ2 = 1

2
γ 12, Γ1 = Γ3 = Γ4 = 0, (5.179)

where γ 12 are calculated in the bases ea .
Equation (5.166) in the cylindrical coordinate system is written as follows

γ 1
(

∂

∂ρ
+ 1

2ρ

)
ψ + 1

ρ
γ 2 ∂

∂ϕ
ψ + γ 3 ∂

∂y3 ψ + γ 4 ∂

∂y4 ψ

+
(
�I + i�jγ

j + i

2
�jsγ

js + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0. (5.180)

The matrices γ 1, γ 2, γ 3, γ 4 in the terms of operator γ a∇a in Eq. (5.180) are
calculated in orthonormal bases ea and do not depend on the variables yi .

5.11.2 Spherical Coordinate System in the Pseudo-Euclidean
Space

The variables xi of the Cartesian coordinate system in the Minkowski space are
connected with variables y1 = r , y2 = θ , y3 = ϕ, y4 of the spherical coordinate
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system by the following equalities

x1 = r sin θ cosϕ, x2 = r sin θ sin ϕ,

x3 = r cos θ, x4 = y4.

The covariant and contravariant components of the metric tensor in the spherical
coordinate system are determined by the matrices

gij =

∥∥
∥
∥
∥
∥∥
∥

1 0 0 0
0 r2 0 0
0 0 r2 sin2 θ 0
0 0 0 −1

∥∥
∥
∥
∥
∥∥
∥

, gij =

∥∥
∥
∥
∥
∥∥
∥

1 0 0 0
0 r−2 0 0
0 0 (r sin θ)−2 0
0 0 0 −1

∥∥
∥
∥
∥
∥∥
∥

.

The scale factors hj
a and hi

a for a nonholonomic orthonormal coordinate system
with basis vectors ea , which are directed along the corresponding basis vectors Эi

of the spherical coordinate system, have the form

hi
a =

∥
∥
∥∥
∥
∥
∥
∥

1 0 0 0
0 r 0 0
0 0 r sin θ 0
0 0 0 1

∥
∥
∥∥
∥
∥
∥
∥

, hj
a =

∥
∥
∥∥
∥
∥
∥
∥

1 0 0 0
0 r−1 0 0
0 0 (r sin θ)−1 0
0 0 0 1

∥
∥
∥∥
∥
∥
∥
∥

.

For the Christoffel symbols in the spherical coordinate system we have

Γ 2
21 = Γ 3

31 = 1

r
, Γ 1

22 = −r, Γ 3
32 = ctg θ,

Γ 1
33 = −r sin2 θ, Γ 2

33 = − sin θ cos θ. (5.181)

The Ricci rotation coefficients Δc,ab are calculated by the formulas

Δ2,12 = −Δ2,21 = 1

r
, Δ3,13 = −Δ3,31 = 1

r
,

Δ3,23 = −Δ3,32 = ctg θ

r
. (5.182)

All components Γ
j

ik and Δc,ab, except noted in Eqs. (5.181) and (5.182), are equal
to zero.

Calculation of the spinor connection coefficients Γi gives

Γ1 = Γ4 = 0, Γ2 = 1

2
γ 12,

Γ3 = 1

2
(− sin θ γ 31 + cos θ γ 23). (5.183)
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Using the equality (5.183) for Γi , we get the writing of the spinor equa-
tions (5.166) in the spherical coordinate system

γ 1
(

∂

∂r
+ 1

r

)
ψ + 1

r
γ 2

(
∂

∂θ
+ 1

2
ctg θ

)
ψ + 1

r sin θ
γ 3 ∂

∂ϕ
ψ

+ γ 4 ∂

∂y4
ψ +

(
�I + i�jγ

j + i

2
�jsγ

js + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0. (5.184)

The components of spintensors γ 1, γ 2, γ 3, γ 4 and the function ψ in the terms
of operator γ a∇a in Eqs. (5.184) are calculated in orthonormal basis ea .



Chapter 6
Exact Solutions of the Nonlinear Spinor
Equations

6.1 Einstein–Dirac Equations

The physical space-time in general relativity is the four-dimensional pseudo-
Riemannian space V4 with the metric signature (+,+,+,−). We assume that the
space V4 referred to a coordinate system with the covariant vector basis Эi and
variables xi , i = 1, 2, 3, 4. In the tangent space at each point of the space V4 we
introduce an orthonormal basis (tetrad) ea , a = 1, 2, 3, 4, connected with the basis
Эi by the scale factors hi

a , hi
a :

ea = hi
aЭi , Эi = hi

aea.

We will denote the indices of tensor components, specified in orthonormal bases
ea , by the first letters of the Latin alphabet, a, b, c, d , e, f . The indices of tensor
components specified in holonomic bases Эi , will be denoted by the Latin letters i,
j , k,. . . .

The Ricci rotation coefficients Δa,bc corresponding to the orthonormal tetrads
ea , are defined in terms of scale factors by the relation (see Chap. 2)

Δa,bc = 1

2

[
hj

a(∂bhjc − ∂chjb) + hj
c(∂ahjb + ∂bhja)

− hj
b(∂ahjc + ∂chja)

]
, (6.1)

in which ∂a = hi
a∂i , ∂i = ∂/∂xi .

Let us also give an expression of the components of the Ricci tensor Rab,
calculated in the orthonormal bases ea in terms of the Ricci rotation coefficients

Rab = ∂cΔb,a
c − ∂bΔc,a

c − Δd,b
cΔc,a

d + Δc,d
cΔb,a

d ,
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which are obtained by contracting the curvature tensor components (2.44) with
components of the metric tensor with respect to the indices b, d . Replacing in
the expression of Rab the differentiation operators ∂a in terms of ∂i and taking in
mind that by virtue of the definition of the Ricci rotation coefficients takes place the
identity

Δa,b
a = 1√−g

∂i
(√−ghi

b

)
, g = det ||gij ||,

expression for Rab can be transformed to a form that will be used in the sequel

Rab = 1√−g
∂j

[√−g
(
hj

cΔb,a
c − hj

bΔc,a
c
)]

− Δf,b
cΔc,a

f + Δc,a
cΔf,b

f .

(6.2)

The Einstein–Dirac equations, describing fields of the spin 1/2, interacting with
the gravitational field, in the framework of the general relativity have the form

γ a∇aψ + mψ = 0,

Rab − 1

2
Rgab = �Tab, (6.3)

where gab = diag(1, 1, 1,−1) are the covariant components of the metric tensor in
the orthonormal basis ea , Rab are the components of the Ricci tensor, R = gabRab

is the scalar curvature of the space V4; � = 8πG/c4, G is the gravitation constant, c
is the light velocity; Tab are symmetric components of the energy-momentum tensor
of the spinor field

Tab = 1

4

(
ψ+γa∇bψ − ∇bψ

+ · γaψ + ψ+γb∇aψ − ∇aψ
+ · γbψ

)
. (6.4)

The spinor field ψ(xi) in Eqs. (6.3), (6.4) is specified in some arbitrary generally
nonholonomic system of the orthonormal tetrads ea , connected with the holonomic
vector basis Эi of the Riemannian space by the scale factors hi

a .
System of the Einstein–Dirac equations (6.3), (6.4) is obtained using the

variational principle with the Lagrangian

Λ = − 1

2�
R + 1

2

(
ψ+γ i∇iψ − ∇iψ

+ · γ iψ
)

+ mψ+ψ, (6.5)

in which the functions ψ(xi), ψ+(xi), and hi
a(xi) are varied.

It is easy to see that due to the Dirac equations the invariant Ta
a of the energy

momentum tensor is determined by the relation

Ta
a = 1

2

(
ψ+γ a∇aψ − ∇aψ

+ · γ aψ
) = −mψ+ψ ≡ −mρ cosη. (6.6)
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Contraction of the Einstein equations in (6.3) with components of the metric tensor
gab with respect to indices a, b gives an equation for the scalar curvature R =
−�Ta

a and, by virtue of (6.6)

R = �mψ+ψ = �mρ cos η. (6.7)

Therefore the Einstein equations in (6.3) can be written also in the form

Rab = �

(
Tab + 1

2
gab mρ cosη

)
,

in which they will be used further.
We face two problems when integrating the Einstein–Dirac equations. The first,

purely technical problem stems from the fact that the Einstein–Dirac equations
constitute a complex system of nonlinear partial differential equations of the second
order for 24 unknown functions.

The second problem is fundamental in nature and stems from the fact that the
spinor field functions ψ in the Riemannian space-time can be determined only in
certain nonholonomic orthonormal bases (tetrads) that must be specified, or a tetrad
gauge is said to be needed. A large number of such gauges are known, and different
authors have suggested various gauges. All of these gauges are either noninvariant
under transformation of the variables of the observe’s coordinate system or are
written in the form of differential equations, which complicates the initial system
of equations. Physically, all gauges are equivalent, because the Einstein–Dirac
equations are invariant under the choice of tetrads. Mathematically, however, using
a bad gauge (i.e., additional equations that close the Einstein–Dirac equations)
can greatly complicate the equations, while using a good gauge can significantly
simplify the equations. In many respects, the problem of choosing a reasonable
tetrad gauge stems from the fact that the solutions of the Einstein–Dirac equations
have been obtained only for diagonal metrics. Since the basis vectors of a holonomic
coordinate system for such metrics are orthogonal, the tetrads associated with the
orthogonal holonomic basis of the Riemannian space can be chosen naturally.

In this book, we use a tetrad gauge [91] that is algebraic and, at the same time, is
formed in an invariant way. From further it follows that Eqs. (6.3) are simplified if
we take as tetrads ea the proper tetrads ĕa of the spinor field ψ:

ĕ1 = πiЭi , ĕ2 = ξ iЭi , ĕ3 = σ iЭi , ĕ4 = uiЭi ,

determined by the field of the spinor ψ with respect to formulas (3.129), (3.126).
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In accordance with this, as the gauge of the tetrads ea in Eqs. (6.3) and (6.4) we
take condition ea = ĕa . Thus, the scale factors in the Einstein–Dirac equations (6.3)
and (6.4) we determine by the matrix

hi
a = h̆i

a =

∥
∥
∥
∥
∥∥
∥
∥

π1 ξ1 σ 1 u1

π2 ξ2 σ 2 u2

π3 ξ3 σ 3 u3

π4 ξ4 σ 4 u4

∥
∥
∥
∥
∥∥
∥
∥

. (6.8)

If the Dirac matrices γa and the metric spinor E are determined by equali-
ties (3.24) and (3.25), then the spinor components ψ in the proper basis ĕa are
determined by relations (3.144) as functions of the invariants ρ and η.

In the case under consideration, when the scale factors are determined by
matrix (6.8), the contravariant components of metric tensor gij of the Riemannian
space are expressed in terms of πi , ξ i , σ i , and ui by the relation

gij = h̆i
a h̆

j
bg

ab = πiπj + ξ iξj + σ iσ j − uiuj , (6.9)

and the Einstein–Dirac equations (6.3) are equivalent to the following system of
equations (see Chap. 5, Sects. 5.3, 5.8)

∂̆a lnρ + Δ̆b,a
b = 2mσ̆a sin η,

∂̆aη + 1

2
εabcdΔ̆b,cd = 2mσ̆a cos η,

R̆ab = �

(
T̆ab + 1

2
gabmρ cos η

)
, (6.10)

where ∂̆a = h̆i
a∂i = {πi∂i, ξ

i∂i , σ
i∂i, u

i∂i}; Δ̆b,cd are determined by equali-
ties (3.150). R̆ab are the covariant components of the Ricci tensor, calculated in
the proper basis ĕa .

The first two equations in (6.10) are identical to the Dirac equations written
in the orthonormal tetrads ĕa . These equations can also be derived from the
Dirac equations in system (6.3) by changing the derivatives ∇a in them using
formula (5.105) and by the subsequent simple algebraic transformations. The tetrad
components of the energy-momentum tensor T̆ab in the basis ĕa are determined by
the relation

T̆ab = 1

4
ρ

[
−σ̆b∂̆aη − σ̆a ∂̆bη + 1

2
σ̆e

(
Δ̆a,cdεb

cde + Δ̆b,cdεa
cde
)]

. (6.11)

Expression (6.11) for T̆ab are obtained from relation (5.118) by transition to the
basis ĕa (i.e., by contracting with the coefficients h̆i

a h̆
j
b with respect to the indices

i, j ).
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The symbols Δ̆a,bc in Eqs. (6.10) and (6.11) corresponding to the proper tetrads
ĕa are calculated by formula (6.1) in which the scale factors h̆i

a are determined
by the matrix (6.8). The symbols Δ̆a,bc in an expanded form are defined by
formulas (5.114). When integrating the Einstein–Dirac equations it is useful to
bear in mind also the matrix of the energy-momentum tensor components which
is obtained in conformity with definition (6.11):

T̆ab = 1

4
ρ

∥
∥∥
∥
∥
∥
∥∥

2Δ̆1,24 Δ̆2,24 − Δ̆1,14 −∂̆1η + Δ̆3,24 Δ̆4,24 − Δ̆1,12

Δ̆2,24 − Δ̆1,14 −2Δ̆2,14 −∂̆2η − Δ̆3,14 −Δ̆2,12 − Δ̆4,14

−∂̆1η + Δ̆3,24 −∂̆2η − Δ̆3,14 −2∂̆3η −∂̆4η − Δ̆3,12

Δ̆4,24 − Δ̆1,12 −Δ̆2,12 − Δ̆4,14 −∂̆4η − Δ̆3,12 −2Δ̆4,12

∥
∥∥
∥
∥
∥
∥∥

.

A system of the differential tensor equations that equivalent to the system of
equations (6.10) and (6.11), can be obtained using the variational principle with the
Lagrangian

Λ = − 1

2�
R − 1

2
ρσ̆ a

(
∂̆aη + 1

2
εabcdΔ̆

b,cd

)
+ mρ cos η,

which is identically equal to expression (6.5).
It is easy to see that Eqs. (6.10) are invariant under an arbitrary Lorentz

transformation of the vectors of the tetrad ĕ1, ĕ2, and ĕ4 that is independent of the
variables xi .1 It is obvious that the Riemannian metric gij does not change under
such transformations of the vectors ĕ1, ĕ2 and ĕ4. The spinor components ψ̆A in the
proper basis ĕa do not change as well since they are defined only by the invariants
ρ and η which do not change under the transformations of the proper basis.

Writing the first two equations in (6.10) in the holonomic basis Эi :

∇i ln ρ + Δ̆j,i
j = 2mσi sin η,

∇iη + 1

2
εijsmΔ̆j,sm = 2mσi cosη

and replacing the Ricci rotation coefficients Δ̆j,sm by their expression in terms of
πi , ξi , σi and ui by formulas (5.106), we obtain a system of the invariant tensor

1This transformation group of the vectors of the proper basis ĕ1, ĕ2 and ĕ4 is related to a group of
the gauge transformations of the spinor components ψA in the basis ea :

ψ ′A = αψA − βψ+A. (*)

Here α, β are arbitrary complex numbers, satisfying the condition α̇α − β̇β = 1. Transforma-
tions (*) were considered in Chap. 3 (see (3.170)).
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equations in the components of the proper tetrad vectors of the spinor field ψ [85,
86, 95]

∇iρπ
i = 0, ∇iρξ

i = 0, ∇iρσ
i = 2mρ sin η, ∇iρu

i = 0, (6.12)

∇iη − 1

2
εijms

(
πj∇mπs + ξj∇mξs + σj∇mσs − uj∇mus

) = 2mσi cos η.

The Christoffel symbols in the second equation in (6.12) entering into the
covariant derivatives in this equation, disappear because there is fulfilled the
alternation with respect to the indices m, s. Taking into account also that for any
vector components Ai the identity holds

∇iA
i = 1√−g

∂i(
√−gAi),

the system of equations (6.12) can be rewritten in the form

∂i
√−gρπi = 0,

∂i
√−gρξi = 0,

∂i
√−gρσ i = 2mρ

√−g sin η,

∂i
√−gρui = 0,

√−g gij ∂jη − 1

2
ε̃ ijms

(
πj∂mπs + ξj ∂mξs + σj∂mσs − uj∂mus

)

= 2mσi√−g cos η, (6.13)

where ε̃ijks = √−g εijks are the Levi-Civita symbols, ε̃1234 = −1.
The quantity

√−g in Eqs. (6.13) according to identity (5.99) is expressed in
terms of the determinant of the matrix of components πi , ξj , σk , and us :

√−g = mod det

∥∥
∥
∥
∥
∥∥
∥

π1 ξ1 σ1 u1

π2 ξ2 σ2 u2

π3 ξ3 σ3 u3

π4 ξ4 σ4 u4

∥∥
∥
∥
∥
∥∥
∥

= mod
(
ε̃ ijksπiξj σkus

)
.

In a harmonic coordinate system, in which by definition equality gijΓ s
ij = 0 is

carried out, the first four equations in (6.12) can be written in the form

gij ∂iρπj = 0, gij ∂iρσj = 2mρ sin η,

gij ∂iρξj = 0, gij ∂iρuj = 0.

Thus, the Christoffel symbols disappear in all Eqs. (6.12) in harmonic coordinate
systems.

We note that in general relativity the components of the vectors πi , ξi , σi , ui are
arbitrary functions connected only by the nondegeneracy condition det ‖h̆i

a‖ �= 0.
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Equation (6.9) being equivalent to the orthonormality conditions of the tetrad ĕa , in
general relativity is the definition of components of the metric tensor and is not a
restriction upon πi , ξi , σi , and ui .

Thus, in general relativity the gravitational field and the fermion field of the
spin 1/2, interacting with it, are completely described by four arbitrary vector
fields πi(x

j ), ξi(xj ), σi(x
j ), ui(x

j ) and two scalar fields ρ(xj ), η(xj ), satisfying
Eqs. (6.10).

The initial system of equations (6.3) contains twenty four real unknown functions
in hi

a(x
j ), ψ(xj ). Equations (6.10) contain eighteen real unknown functions ρ(xj ),

η(xj ), πi(x
j ), ξi(xj ), σi(x

j ), and ui(x
j ). Thus, the use of the special tetrad gauge

ea = ĕa in the Einstein–Dirac equations reduces the number of unknown functions
by six units.

In various special problems, along with Eqs. (6.10) one can use the Bianchi
and Ricci identities just as is done in the Newman–Penrose formalism. The use
of these identities, written in the bases ĕa , in some cases can additionally simplify
the integration of Eqs. (6.10).

6.2 General Exact Solution of the Einstein–Dirac Equations
in Homogeneous Space

Some particular exact solutions of the Einstein–Dirac equations (6.3) in the
Riemannian space whose metric is defined by the relation

ds2 = a2(t)dx2 + b2(t)dy2 + c2(t)dz2 − f 2(t)dt2

with the coefficients a(t), b(t), c(t), f (t), depending only on the single variable
t = x4, have been obtained in [3, 29, 51, 52, 59]. Here, we obtain the general
exact solution of the Einstein–Dirac equations in the homogeneous Bianchi 1 type
Riemannian space [91, 92, 94, 95].

Let us consider a class of the differentiable functions gij (x
k), depending only

on the variable x4 of the coordinate systems. In this case under the admissible
transformations of variables of the coordinate system

x4 = ϕ(y4), xα = yα + ϕα(y4), (6.14)

where ϕ(y4) and ϕα(y4) are arbitrary differentiable functions, covariant compo-
nents of the metric tensor are transformed according to formulas

g′
αβ = gαβ, g′

4α = dϕ

dy4 g4α + dϕβ

dy4 gαβ .
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From these formulas it is clear that by the transformation (6.14) (even at x4 =
e4) the components g4α can be turned to zero if det ‖gαβ‖ �= 0. Therefore, if
det ‖gαβ‖ �= 0, then in the Riemannian space one can introduce a synchronous coor-
dinate system in which the following equalities hold for the covariant components
of the metric tensor

g41 = g42 = g43 = 0, g44 = −1.

It is obvious that in this case for the contravariant components g4i the equalities
g41 = g42 = g43 = 0, g44 = −1 hold.

Let us assume further that the coordinate system with the variables
xi is synchronous and seek the exact solutions of the system of equa-
tions (5.114), (6.10), (6.11), (6.13), (6.2), depending only on the variable x4 = t .
The first four equations and the last one in (6.13) for j = 4 in this case take the
form

∂4
√−gρπ4 = 0,

∂4
√−gρξ4 = 0,

∂4
√−gρσ 4 = 2mρ

√−g sin η,

∂4
√−gρu4 = 0,

∂4η = −2mσ 4 cos η. (6.15)

The condition of synchronism of the coordinate system yields

g44 ≡ π4π4 + ξ4ξ4 + σ 4σ 4 − u4u4 = −1. (6.16)

Equations (6.15) and (6.16) are a closed system of equations for determining the
quantities π4, ξ4, σ 4, u4, η, ρ

√−g.
From Eqs. (6.15) it follows

√−g ρπ4 = const,
√−g ρξ4 = const,

√−g ρu4 = const . (6.17)

Dividing the second equation in (6.15) by
√−gρu4 = const , we find

∂4

(
σ 4

u4

)
= 2m

sin η

u4 . (6.18)

Now from the last equation in (6.15) and from Eq. (6.18) we obtain

d

dη

(
σ 4

u4

)
= − 1

σ 4u4 tg η. (6.19)

As due to integrals (6.17) the following relations are valid

π4

u4 = const,
ξ4

u4 = const,
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then from the condition of synchronism (6.16) we find

(
σ 4

u4

)2

= − 1

(u4)2 + const.

Therefore Eq. (6.19) after multiplication by σ 4/u4, can be transformed to the form

1

2

d

dη

(
1

u4

)2

=
(

1

u4

)2

tg η. (6.20)

Equation (6.20) has the integral2

u4 = Cu| cosη |, Cu � 1 − const,

by means of which we find the general solution of Eqs. (6.15), (6.16):

Cρ

ρ
√−g

= π4

Cπ

= ξ4

Cξ

= u4

Cu

= 1
√

1 + C2
σ cos2(2mt + ϕ)

, (6.21)

σ 4 = εCσ sin(2mt + ϕ)
√

1 + C2
σ cos2(2mt + ϕ)

, exp iη = ε
1 + iCσ cos(2mt + ϕ)
√

1 + C2
σ cos2(2mt + ϕ)

.

Here ϕ, Cπ , Cξ , Cσ , Cu � 1, Cρ > 0 are integration constants; the coefficient ε
can take any of the two values +1 or −1. Due to the synchronism condition (6.16)
the constants C are connected by the relation

(Cπ)
2 + (Cξ )

2 + (Cσ )
2 − (Cu)

2 = −1. (6.22)

It is easy to see that due to solution (6.21) are carried out the equalities

2mσ 4 sin η = d

dt
ln u4, ρu4√−g = CρCu, (6.23)

which will be used further.
We now pass to consideration of Eqs. (6.10), (6.11). In the class of the admissible

functions depending only on the variable t , for the derivatives ∂̆a we have ∂̆a =

2In an arbitrary coordinate system received from synchronous system by admissible transforma-
tions (6.14), this integral has the form

C2
u g44 cos2 η = −(u4)2,

where g44 is the component of the metric tensor.
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h̆i
a∂i = h̆4

a∂4. Therefore in the considered class of functions, formula (6.1) for the
Ricci rotation coefficients Δ̆a,bc can be represented in the form

Δ̆a,bc = 1

2
(hbsac − hcsab − haabc), (6.24)

where by definition

sab = h̆i
a∂4h̆ib + h̆i

b∂4h̆ia,

aab = h̆i
a∂4h̆ib − h̆i

b∂4h̆ia (6.25)

and to simplify the notation we denote ha = h̆4
a . Taking into account the gauge

condition (6.8), we have

h1 = π4, h2 = ξ4, h3 = σ 4, h4 = u4. (6.26)

Thus, the quantities ha in formula (6.24) are determined by solution (6.21) as
functions of the parameter t . Therefore formula (6.24) expresses 24 dependent
functions Δ̆a,bc in terms of the 16 independent functions sab, aab.

The quantities sab are symmetric in the indices a and b, while the quantities aab
are antisymmetric

sab = sba, aab = −aba.

By virtue of definitions (6.25) the quantities aab and sab in the synchronous
coordinate system satisfy the identities

hbsab = 0, sa
a = 2∂4 ln

√−g,

hbaab = −2∂4ha. (6.27)

From definitions (6.25) it also follows that the symmetric quantities sab are
determined by the derivative of the metric tensor components

sab = h̆i
a h̆

j
b∂4gij .

Substituting in the first two equations in (6.10) the Ricci rotation coefficients
Δ̆a,bc according to formula (6.24), we write these equations in the form (when
transforming the second equation in (6.10) identity (6.27) should be taking into
account )

ha∂4η − 1

4
εabcdhdabc = 2mσ̆a cos η,

∂4h
a + ha∂4 ln(ρ

√−g) = 2mσ̆a sin η. (6.28)
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Contracting the first equation in (6.28) with components of the tensor εabcdhd with
respect to the index a, after some transformations in view of the second equation
in (6.28), we obtain the following expression for the antisymmetric quantities aab:

aab = 4m
[
(σahb − σbha) sin η − εabcdσ

chd cos η
]
. (6.29)

Thus, relation (6.29) for the antisymmetric coefficients aab is satisfied due to the
first two equations in (6.10).

It is easy to see that derivative ∂4h̆ib are expressed in terms of the quantities aab,
sab. Indeed, taking into account the equality h̆i

ah̆j
a = δ

j
i we find

∂4h̆ib = h̆i
a h̆j

a∂4hjb

= h̆i
a

[
1

2

(
h̆j

a∂4h̆jb + h̆j
b∂4h̆ja

)+ 1

2

(
h̆j

a∂4h̆jb − h̆j
b∂4h̆ja

)]
.

From this taking into account definitions (6.25) we obtain

∂4h̆ib = 1

2
h̆i

a
(
aab + sab

)
. (6.30)

Let us now consider the Einstein equations in (6.10). For the considered class
of unknown functions the definitions (6.11) and (6.2) for the components of the
energy-momentum tensor and the Ricci tensor by virtue of Eqs. (6.28) and (6.24)
give the following expressions

T̆ab = 1

8
ρhc

(
εa

cf esbf + εb
cf esaf

)
σ̆e + ρmhahb cosη, (6.31)

R̆ab = 1

2
√−g

∂4
(√−g sab

)− 1

4
hahb

(
sef s

ef + 2∂4se
e
)+ 1

4

(
sacab

c + sbcaa
c
)
.

Using Eqs. (6.27), (6.29) and definitions (6.31) of T̆ab and R̆ab, the Einstein
equations in (6.10) can be written in the form of an equivalent system of equations

∂4(
√−g sab) − 2

√−g

(
m cosη + 1

8
�ρ

)(
εcef asb

f + εcef bsa
f
)
hcσ̆ e

−2m
√−g

(
hasbc + hbsac

)
σ̆ c sin η = �mρ

√−g cos η
(
gab + hahb

)
,

(
sa

a
)2 − sabs

ab = 8�ρm cosη. (6.32)

The first equation in (6.32) is obtained by contracting the Einstein equations
in (6.10) with the tensor components δac + hch

a with respect to the index a. The
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second equation in (6.32) is obtained by contracting the Einstein equations in (6.10)
with the tensor components gab + 2hahb with respect to the indices a, b.

The quantity ρ
√−g cosη in the right-hand side of the first equation (6.32) due

to solution (6.21) is constant

ρ
√−g cos η = εCρ. (6.33)

Contraction of Eqs. (6.32) with gab with respect to the indices a, b gives the
equation

∂4∂4
√−g = 3

2
�mεCρ,

whence we find

√−g = 3

4
�mεCρt

2 + f t + n. (6.34)

Here f and n are integration constants. If in Eq. (6.34) �m �= 0, then by mean of a
linear transformation of the parameter t the expression for

√−g can be transformed
to the form

√−g = 3

4
�mεCρ(t

2 − a2). (6.35)

where a is a real or imaginary constant a = |a| or a = |a|i, i = √−1.
In this case from Eqs. (6.33) we get an expression for the invariant ρ of the spinor

field:

ρ = 4
√

1 + C2
σ cos2(2mt + ϕ)

3�mε(t2 − a2)
.

The quantity a2 is defined further (see (6.48)), the constant ε should be chosen
in such a way that the condition

√−g > 0 is fulfilled.
The obtained relations already permits us to write out the solution for the

spinor components ψ̆ in the proper basis ĕa . If the Dirac metrices γa and the
metric spinor E are determined by relations (3.24) and (3.25), then, according to
definitions (3.144) and the above solution (6.21), (6.35) for ρ, η,

√−g, we can
write for ψ̆ in the proper basis ĕa

ψ̆ = ±

∥
∥
∥
∥∥
∥
∥
∥
∥∥
∥
∥

0

i

√
2

3�m

1 + iCσ cos(2mt + ϕ)

t2 − a2

0

i

√
2

3�m

1 − iCσ cos(2mt + ϕ)

t2 − a2

∥
∥
∥
∥∥
∥
∥
∥
∥∥
∥
∥

. (6.36)
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Since in the proper basis ĕa of the spinor ψ the equality σ̆ a = (0, 0, 1, 0) is
satisfied, and the quantities ρ, η,

√−g, and hc in Eqs. (6.32) are already determined
as functions of t by relations (6.21) and (6.35), then Eqs. (6.32) are a linear
differential equations with variables factors in the unknown functions

√−g sab.
From solution (6.21) it follows that the quantities ha , determined by equali-

ties (6.26), can be represented as

{h1, h2, h4} = 1
√

1 + C2
σ cos2(2mt + ϕ)

{Cπ,Cξ , Cu}.

It is seen from this that the direction of the three-dimensional vector with compo-
nents h1, h2, h4 does not depend on parameter t . Therefore components h1, h2 can
be transformed to zero by a t-independent Lorentz transformation of the vectors ĕ1,
ĕ2, ĕ4.

In view of the invariancy of the considered equations under such transformations
it is sufficient to consider the solutions of Eqs. (6.32) only for h1 = h2 = 0 (i.e., for
π4 = ξ4 = 0 and consequently (u4)2 − (σ 4)2 = 1). Under this condition from the
first equation in (6.32) it follows (here it is necessary to bear in mind also Eq. (6.33))

∂4(s33
√−g ) − 4mσ 4 sin η s33

√−g = ε�mCρ(u
4)2,

∂4(s23
√−g ) − 2mσ 4 sin η s23

√−g −
(

2m cosη + 1

4
�ρ

)
u4s13

√−g = 0,

∂4(s13
√−g ) − 2mσ 4 sin η s13

√−g +
(

2m cosη + 1

4
�ρ

)
u4s23

√−g = 0,

∂4(s11
√−g ) + 2

(
2m cosη + 1

4
�ρ

)
u4s12

√−g = ε�mCρ,

∂4(s22
√−g ) − 2

(
2m cosη + 1

4
�ρ

)
u4s12

√−g = ε�mCρ,

∂4(s12
√−g ) −

(
2m cosη + 1

4
�ρ

)
u4(s11 − s22)

√−g = 0,

∂4(s14
√−g ) +

(
2m cosη + 1

4
�ρ

)
u4s24

√−g − 2mu4 sin η s31
√−g = 0,

∂4(s24
√−g ) −

(
2m cosη + 1

4
�ρ

)
u4s14

√−g − 2mu4 sin η s23
√−g = 0,

∂4(s34
√−g ) − 2m sin η

(
σ 4s34 + u4s33

)√−g = ε�mCρσ
4u4,

∂4(s44
√−g ) − 4mu4 sin η s34

√−g = ε�mCρ(σ
4)2. (6.37)
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The last four equations in (6.37) due to the identities (6.27) are the consequences
of the first six equations. The remaining equations in (6.37) are split into three
groups consisting of one, two and three equations which admit consecutive integra-
tion. Having determined from these six equations the functions

√−g s11,
√−g s22,√−g s33,

√−g s13,
√−g s23,

√−g s12, one finds
√−g sα4 from the first identity

in (6.27).
At first we consider the first equation in (6.37). Using the first equality in (6.23),

we transform the first equation in (6.37) to the form

∂4

[
s33

√−g

(u4)2

]
= ε�mCρ.

From this, we find by means of the second equality in (6.23)

s33 = ρ(u4)3

CρCu

∫
ε�mCρdt = ρ(u4)3

(
ε�m

Cu

t + 2

3
N

)
,

where N is an arbitrary constant. An expression for s33 conveniently to write in
another form. Notice that due to definition (6.35) the equality holds

ε�m

Cu

t = 2

3CρCu

∂4
√−g.

Therefore the solution for s33 can be finally written in the form

s33 = 2

3
ρ(u4)3

(
N + 1

CρCu

∂4
√−g

)
. (6.38)

In the same way from the last equation in (6.37) we obtained the solution for s44:

s44 = 2

3
ρu4(σ 4)2

(
N + 1

CρCu

∂4
√−g

)
. (6.39)

Solutions (6.38) and (6.39) can also be obtained by considering the difference
between the first and last equations in (6.37) and using the identities

u4s34 = σ 4s33, u4s44 = σ 4s34, (6.40)

following in the case under consideration from the first identity in (6.27).
By means of identities (6.40) we obtained also the solution for s34:

s34 = 2

3
ρσ 4(u4)2

(
N + 1

CρCu

∂4
√−g

)
.
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From the second and third equations in (6.37) we obtain the solution for functions
s13 and s23:

s13 = 1

2
ρ(u4)2A cos(ζ + α),

s23 = 1

2
ρ(u4)2A sin(ζ + α),

where A and α are arbitrary constants, the quantity ζ is defined by the relation

ζ =
∫ (

2m cosη + 1

4
�ρ

)
u4 dt.

Using expressions (2.11) for ρ, u4 and η, we find for a �= 0

ζ = ε arctg

(
tg(2mt + ϕ)
√

1 + C2
σ

)

+ εCu

6ma
ln

∣∣
∣
∣
t − a

t + a

∣∣
∣
∣ . (6.41)

If a = 0, then we have

ζ = ε arctg

(
tg(2mt + ϕ)
√

1 + C2
σ

)

− εCu

3m

1

t
. (6.42)

By means of identities (6.27) we get also the solutions for s14, s24:

s14 = σ 4

u4 s13 = 1

2
ρu4σ 4A cos(ζ + α),

s24 = σ 4

u4 s23 = 1

2
ρu4σ 4A sin(ζ + α).

It remains to find the functions s11, s12, and s22. For this purpose let us add and
subtract the fourth and fifth equations in (6.37). As a result, we obtain the equations

∂4
[(
s11 + s22

)√−g
] = 2ε�mCρ,

∂4

(
s11 − s22

2

√−g

)
= −2

(
2m cosη + 1

4
�ρ

)
u4s12

√−g. (6.43)

A solution of the first equation in (6.43) has the form3

s11 + s22 = 2

3
ρu4

(
−N + 2

CρCu

∂4
√−g

)
. (6.44)

3To determine the integration constant in this solution it is necessary to use the second identity
in (6.27) and solution (6.38), (6.39).
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From the sixth equation in (6.37) and the second equation in (6.43) we obtaine

s12 = −1

2
Bρu4 cos 2(ζ + β),

s11 − s22 = Bρu4 sin 2(ζ + β). (6.45)

Here B is an arbitrary constant, and function ζ is determined by (6.41) or (6.42).
From Eqs. (6.44) and (6.45) we obtain

s11 = ρu4
[
−1

3
N + 2

3CρCu

∂4
√−g + 1

2
B sin 2(ζ + β)

]
,

s22 = ρu4
[
−1

3
N + 2

3CρCu

∂4
√−g − 1

2
B sin 2(ζ + β)

]
.

Thus, all functions sab are found. Let us write out completely the obtained
solution for sab:

s11 = ρu4
[
−1

3
N + 2

3CρCu

∂4
√−g + 1

2
B sin 2(ζ + β)

]
,

s22 = ρu4
[
−1

3
N + 2

3CρCu

∂4
√−g − 1

2
B sin 2(ζ + β)

]
,

s33 = 2

3
ρ(u4)3

(
N + 1

CρCu

∂4
√−g

)
,

s44 = 2

3
ρu4(σ 4)2

(
N + 1

CρCu

∂4
√−g

)
,

(6.46)

s12 = −1

2
ρu4B cos 2(ζ + β),

s13 = 1

2
ρ(u4)2A cos(ζ + α),

s23 = 1

2
ρ(u4)2A sin(ζ + α),

s34 = 2

3
ρσ 4(u4)2

(
N + 1

CρCu

∂4
√−g

)
,

s14 = 1

2
ρu4σ 4A cos(ζ + α),

s24 = 1

2
ρu4σ 4A sin(ζ + α).

Here A, B, N , α, and β are integration constants; the quantities σ 4, u4 are
determined by relations (6.21); ε = ±1; the quantity

√−g is determined by
equality (6.35); the function ζ are determined by equality (6.41) or (6.42). The
general solution of Eqs. (6.37) for h1 �= 0, h2 �= 0 is obtained from (6.46) by a
constant Lorentz transformation of the vectors ĕ1, ĕ2, and ĕ4.
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From (6.46) it follows

sa
a = 2

∂4
√−g√−g

,

sabs
ab = 4

3

(
∂4

√−g√−g

)2

+ 2ρ2(u4)2
(

1

4
A2 + 1

4
B2 + 1

3
N2

)
. (6.47)

Taking into account (6.47), we get that the second equation in (6.32) defines the
constant a2 in expression (6.35) for

√−g

a2 = C2
u

3�2m2

(
1

4
B2 + 1

4
A2 + 1

3
N2

)
� 0. (6.48)

Relations (6.21), (6.29), and (6.46) determine the Ricci rotation coeffi-
cients (6.24) as functions of the variable t .

Relations (6.21), (6.29), (6.35), (6.36), and (6.46) completely determine a first
integral of the Einstein–Dirac equations. To obtain the general solution of the
Einstein–Dirac equations it is now sufficient to integrate Eqs. (6.30), where aab
and sab are determined by equalities (6.29) and (6.46). Replacing in Eqs. (6.30) the
quantities h̆ib , aab, sab in terms of πi , ξi , σi , ui according to formulas (6.8), (6.29),
and (6.46), after certain transformations we obtain a system of equations for
determining the components of the vectors πi , ξi , σi , and ui :

d

dτ

(
u4σj − σ 4uj

)
= 1

4
A
[
πj cos(ζ + α) + ξj sin(ζ + α)

]+

+
(
u4σj − σ 4uj

)( 1

3
√−g

d

dτ

√−g + 1

3
N

)
,

d

dτ

(
ξj + iπj

) = (ξj + iπj )

(
1

3
√−g

d

dτ

√−g − 1

6
N − i

2m

ρ
cos η

)
−

− i

4

(
ξj − iπj

)
B exp

[− 2i(ζ + β)
]+ i

4
A
(
u4σj − σ 4uj

)
exp[−i(ζ + α)],

(6.49)

which should be supplemented with the synchronism condition

g4α ≡ σ4σα − u4uα = 0. (6.50)

For dτ in (6.49) we have by definition dτ = ρu4dt . The connection between τ

and t can be written in a closed form. Replacing in the equation dτ = ρu4dt the
quantities ρ and u4 according to solution (6.21), we obtain

τ =
∫

ρu4dt =
∫

CρCu√−g
dt.
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Replacing in this equation
√−g by formula (6.35) and integrating, we obtain (for

a = |a| �= 0)

τ = μ

∫
dt

t2 − a2 = μ

2a
ln

∣
∣
∣
∣
t − a

t + a

∣
∣
∣
∣+ τ0, (6.51)

where μ = 4εCu/3�m and τ0 is an arbitrary real constant.
If a = 0, we have

τ = −μ

t
+ τ0.

The integration constant τ0 is insignificant for the subsequent conclusions; without
loss of generality one can put τ0 = 0. For j = 4 Eqs. (6.49) are satisfied identically
due to the conditions h1 = 0, h2 = 0 (i.e., π4 = 0, ξ4 = 0).

The subsequent solutions of the equations will be formulated with the aid of the
variable τ , therefore here we give expression

√−g in terms of τ :

√−g = 3

4
�mεCρ

(
t2 − a2

)
≡

⎧
⎪⎨

⎪⎩

3

4
�mCρa

2 sinh−2 a

μ
τ, if ε = 1,

3

4
�mCρa

2 cosh−2 a

μ
τ, if ε = −1.

(6.52)

To integrate Eqs. (6.49), let us make in them the change of the unknown functions

(πλ, ξλ, σλ, uλ) =
(
πλ, ξλ, σλ,

σ4

u4
σλ

)
→ (π0

λ , ξ
0
λ , θλ), λ = 1, 2, 3,

by formulas

ξλ + iπλ =
(
ξ0
λ + iπ0

λ

)
(
√−g)1/3 exp

(
− 1

6
Nτ − iζ

)
,

σλ = θλ(
√−g )1/3u4 exp

(
− 1

6
Nτ

)
,

uλ = θλ(
√−g )1/3σ 4 exp

(
− 1

6
Nτ

)
, (6.53)

Here ζ is determined by relation (6.41) or (6.42); quantities σ 4, u4 are determined by
the solution (6.21);

√−g is determined by equality (6.52). As a result the condition
of synchronism (6.50) is satisfied identically, and system of equations (6.49)
becomes a system of linear equations with constant coefficients

d

dτ

(
ξ0
λ + iπ0

λ

) = i

4
�
(
ξ0
λ + iπ0

λ

)− i

4
Be−2iβ(ξ0

λ − iπ0
λ

)+ i

4
Ae−iαθλ,
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d

dτ
θλ = 1

4
A
(
π0
λ cosα + ξ0

λ sin α
)+ 1

2
Nθλ. (6.54)

From (6.9) and (6.53) it follows that the spatial components of the metric tensor
gαβ are expressed in terms of π0

λ , ξ0
λ , θλ as follows

gαβ = (√−g
)2/3

e− 1
3 Nτ

(
π0
απ

0
β + ξ0

αξ
0
β + θαθβ

)
. (6.55)

The linear equations (6.54) are solved by a well known method. The characteris-
tic equation corresponding to Eq. (6.54) for each value of the index λ = 1, 2, 3 is a
cubic equation with respect to the eigenvalue q:

det

⎧
⎨

⎩
1

4

∥
∥
∥
∥∥
∥

B sin 2β −B cos 2β + � A cosα
−B cos 2β − � −B sin 2β A sinα

A cosα A sinα 2N

∥
∥
∥
∥∥
∥

− qI

⎫
⎬

⎭
= 0,

which can be written in the form

2(N − 2q)(16q2 + �2 − A2 − B2) + A2[2N − B sin 2(α − β)] = 0. (6.56)

In general, the solution of the cubic equation (6.56) is given by the Cardano
formulas. In the general case the solution of Eqs. (6.54) looks rather cumbersome,
therefore we here restrict ourselves only to the case A = 0, as well as the case when
the integration constants are connected by the relation 2N = B sin 2(α − β).

Let us consider at first the case when the equations 2N = B sin 2(α − β), A �= 0
are carried out. In this case the eigenvalues q have the form 1

2N , 1
4

√
A2 + B2 − �2,

− 1
4

√
A2 + B2 − �2. If 0 < A2 + B2 < �2, then the solution of Eqs. (6.54) can be

written in the form

ξ0
λ + iπ0

λ = e−iα{−AQλe
1
2 Nτ + [−(� + Be2i(α−β))Fλ + 4iΛGλ] cosΛτ

+ [−(� + Be2i(α−β))Gλ − 4iΛFλ] sinΛτ },
θλ = [� − B cos 2(α − β)]Qλe

1
2 Nτ + A(Fλ cosΛτ + Gλ sin Λτ).

(6.57)

Here Fλ, Gλ, QΛ are integration constants, Λ = 1
4

√
�2 − A2 − B2.

For the spatial components of the metric tensor, we obtain the following
expression using formula (6.55)

gαβ = (
√−g )2/3e− 1

3Nτ
[
QαQβZ

2eNτ

+ FαFβ(S + M cos 2Λτ + 8ΛN sin 2Λτ)

+ GαGβ(S − M cos 2Λτ − 8ΛN sin 2Λτ)
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+ (FαGβ + FβGα)(M sin 2Λτ − 8ΛN cos 2Λτ)

+ (FαQβ + FβQα)2�Ae
1
2 Nτ cosΛτ

+ (GαQβ + GβQα)2�Ae
1
2 Nτ sinΛτ

]
, (6.58)

where 2N = B sin 2(α − β), and we use the following notations for constants

M = A2 + B2 + �B cos 2(α − β), S = �[� + B cos 2(α − β)],
Z2 = A2 + [� − B cos 2(α − β)]2.

The quantity
√−g in the right-hand side of equality (6.58) is defined by rela-

tion (6.52).
Formula (6.58) defines the oscillatory approach to the singular points of the

solution.
The metric is particularly simple when the phases α and β satisfy the condition

α − β = kπ , k = 0,±1,±2, . . . . In this case N = 0, constants A and B are
arbitrary, and the integration constants Fλ, Gλ, QΛ satisfy the equation

εαβλFαGβQΛ =
(
�2 − A2 − B2

)−3/2
, (6.59)

where εaβλ is the Levi-Civita symbol. The relation (6.59) expresses the equality
between the value of

√−g calculated from the solution (6.57) and that according
to (6.52).

Obvious, by a constant transformation of the variables x1, x2, x3 it is always
possible to reduce components Fα , Gα, Qα to the form

Fα = {
(�2 − A2 − B2)−1/2, 0, 0

}
, Gα = {

0, (�2 − A2 − B2)−1/2, 0
}
,

Qα = {
0, 0, (�2 − A2 − B2)−1/2}.

Then the spatial part of the component of the metric tensor is determined by the
matrix

gαβ = (
√−g )2/3

16Λ2

∥
∥
∥
∥∥
∥

S + M cos 2Λτ M sin 2Λτ 2�A cosΛτ

M sin 2Λτ S − M cos 2Λτ 2�A sin Λτ

2�A cosΛτ 2�A sinΛτ Z2

∥
∥
∥
∥∥
∥
.

If A2 + B2 > �2, then the trigonometric functions in (6.57) are replaced by the
hyperbolic ones.
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Consider now the case when in Eqs. (6.54) the coefficient A is equal to zero
A = 0. In this case the equations for θλ and for πλ, ξλ are split and for 0 < |B| < �

the general solution of Eqs. (6.54) can be written as

θλ = Qλ(� − B) exp

(
1

2
Nτ

)
, (6.60)

ξ0
λ + iπ0

λ = e−iβ{[−(� + B)Fλ + 4iΛGλ] cosΛτ

+ [−(� + B)Gλ − 4iΛFλ] sinΛτ },

where Λ = 1
4

√
�2 − B2, while the real integration constants Fα , Gα , Qα satisfy the

equation

εαβλFαGβQΛ = (�2 − B2)−3/2.

The metric tensor is defined by the components

gαβ = (
√−g)2/3e−Nτ/3[FαFβ(� + B)(� + B cos 2Λτ)

+ GαGβ(� + B)(� − B cos 2Λτ) + (FαGβ + FβGα)(� + B)B sin 2Λτ

+ QαQβ(� − B)2eNτ
]
. (6.61)

The quantity
√−g in the right-hand side of equality (6.61) is defined by

Eq. (6.52). If we define the constants Fα , Gα, and Qα by the relations

Fα = {
(�2 − B2)−1/2, 0, 0

}
, Gα = {

0, (�2 − B2)−1/2, 0
}
,

Qα = {
0, 0, (�2 − B2)−1/2},

then we find

gαβ = (
√−g)2/3e− 1

3 Nτ

� − B

∥
∥
∥
∥
∥∥
∥
∥

� + B cos 2Λτ B sin 2Λτ 0
B sin 2Λτ � − B cos 2Λτ 0

0 0
(� − B)2

� + B
eNτ

∥
∥
∥
∥
∥∥
∥
∥

.

The solution of the equations under consideration for |B| > � is defined
from (6.60) by replacement of the trigonometric functions by the hyperbolic ones.

If in Eqs. (6.54) constants A and B are equal to zero A = B = 0, then the
following solution is obtained

θα = �Qα exp

(
1

2
Nτ

)
,

ξ0
α + iπ0

α = �(−Fα + iGα) exp

(
i

4
�τ

)
.
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In this case we find the components of the vectors πi , ξ i , σ i , ui by means of
definitions (6.53)

ξα + iπα = �(
√−g )1/3

∣
∣
∣
∣
t + aε

t − aε

∣
∣
∣
∣

1/3

× Cu cos(2mt + ϕ) − iε sin(2mt + ϕ)
√

1 + C2
σ cos2(2mt + ϕ)

(iGα − Fα) ,

σα = �(
√−g )1/3

∣
∣
∣
∣
t − aε

t + aε

∣
∣
∣
∣

2/3
Cσ sin(2mt + ϕ)

√
1 + C2

σ cos2(2mt + ϕ)
Qα,

uα = �(
√−g )1/3

∣
∣
∣
∣
t − aε

t + aε

∣
∣
∣
∣

2/3
Cu√

1 + C2
σ cos2(2mt + ϕ)

Qα,

√−g = 3

4
�mεCρ

(
t2 − a2

)
, (6.62)

and the metric is defined as follows

gαβ =�2(
√−g)2/3

[
e− 1

3Nτ
(
FαFβ + GαGβ

)+ e
2
3 NτQαQβ

]

≡�2(
√−g )2/3

{ ∣∣∣
∣
t + aε

t − aε

∣
∣∣
∣

2/3 (
FαFβ + GαGβ

)+
∣
∣∣
∣
t − aε

t + aε

∣
∣∣
∣

4/3

QαQβ

}
.

If we define the constants Fα , Gα, and Qα by the relations

Fα = {
�−1, 0, 0

}
, Gα = {

0, �−1, 0
}
, Qα = {

0, 0, �−1},

then metric (6.63) is defined by the diagonal matrix

gαβ =(
√−g)2/3 diag

(
e− 1

3 Nτ , e− 1
3 Nτ , e

2
3 Nτ

)

≡(
√−g)2/3 diag

{∣∣
∣
∣
t + aε

t − aε

∣∣
∣
∣

2/3

,

∣∣
∣
∣
t + aε

t − aε

∣∣
∣
∣

2/3

,

∣∣
∣
∣
t − aε

t + aε

∣∣
∣
∣

4/3
}

. (6.63)

The quantity
√−g is determined by formula (6.35).

The solution of the Einstein–Dirac equations (6.3) with the metric tensor (6.63)
for a = 0 was obtained in [29].

Let us calculate the scalar curvature R of the Riemannian space. It follows from
Eqs. (6.7), (6.33) that

R = ε�mCρ√−g
. (6.64)
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Replacing here
√−g by formula (6.35) we find a dependence of curvature on time

t:

R = 4

3
(
t2 − a2

) . (6.65)

In the general case, by virtue of the condition of positivity of the invariant ρ > 0 (or√−g > 0), from Eq. (6.35) we find that function (6.53), (6.57), (6.60), and (6.62)
for ε = 1 determine solutions of Eqs. (6.10) only for | t | > a, while in the
interval | t | < a the solution does not exist. At ε = 1 and t = ±a the metric is
degenerate, and the curvature tensor has a singularity at these points. If ε = −1, then
functions (6.53), (6.57), (6.60), and (6.62) determine the solutions of Eqs. (6.10)
only in the interval | t | < a. Recall that similar solutions of the Einstein equations
in the space without matter (such as the Kazner solutions) in the synchronous
coordinate system have only single singular point [40]. Thus, the existence of a
fermion field in the space-time of results in qualitative changes in solutions of the
Einstein equations.

Let us calculate the components of the energy-momentum tensor for the obtained
solutions. Replacing quantities sab in definition (6.31) according to solution (6.46),
we obtain for the tetrad components of the energy-momentum tensor T̆ab:

T̆11 = −T̆22 = 1

8
B(ρu4)2 cos 2(ζ + β), (6.66)

T̆33 =ρm(σ 4)2 cosη,

T̆12 =1

8
B(ρu4)2 sin 2(ζ + β),

T̆23 = 1

16
ρ2(u4)3A cos(ζ + α),

T̆14 = − 1

16
(ρu4)2σ 4A sin(ζ + α),

T̆44 =ρm(u4)2 cosη,

T̆34 =ρmσ 4u4 cosη,

T̆31 = − 1

16
ρ2(u4)3A sin(ζ + α),

T̆24 = 1

16
(ρu4)2σ 4A cos(ζ + α).

The components Tij of the energy-momentum tensor calculated in the holonomic
coordinate system xi are connected with the tetrad components T̆ab as follows

Tij = h̆i
ah̆j

bT̆ab = T̆11πiπj + T̆22ξiξj + T̆33σiσj + T̆44uiuj

+ T̆12(πiξj + πjξi) + T̆23(ξiσj + ξjσi) + T̆13(σiπj + σjπi)

− T̆14(πiuj + πjui) − T̆24(ξiuj + ξj ui) − T̆34(σiuj + σjui).

For component T44 in the holonomic coordinate system we have

T44 = T̆33σ
2
4 + T̆44u

2
4 − 2T̆34σ4u4.
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Taking into account expression (6.66) for the tetrad components T̆ab, the formula
for T44 can be represented in the form

T44 = ρm cosη
(
σ 2

4 − u2
4

)2
.

From this by virtue of the condition g44 = −1 for component T44, calculated
in the holonomic coordinate system the expression T44 = ρm cos η is obtained.
Bearing in mind solution (6.21) and (6.35), we find

T44 = εmCρ√−g
= 4

3�(t2 − a2)
. (6.67)

As known, in the classical field theory component T44 of the energy-momentum
tensor determines the field energy density. From formula (6.67) it follows that for
all solutions under consideration the energy density T44 is negative in the interval
| t | < a and corresponds then to the value of coefficient ε = −1; solutions in the
interval | t | < a for ε = 1 does not exist. The solutions with the positive density
of energy lie in the area | t | > a and correspond to the value ε = 1, solutions
in the interval | t | > a for ε = −1 does not exist. Thus, for the considered class
of solutions at each value of parameter t in the synchronous coordinate system the
solution can be only with one sign of the fermion field energy.

If in the solutions obtained here one puts A = B = N = 0, � = 0, they turn
into solutions of the Dirac equations in flat space-time (in the general case this is a
plane wave). It should be noted that the solutions of the Dirac equations in the form
of plane waves in pseudo-Euclidean space possesses the positive density T44 for
ε = 1 and negative density T44 for ε = −1 for any values of t . To the solutions of
the Dirac equations in a Riemannian space, as follows from the obtained solutions,
also corresponds to a positive energy density T44 for ε = 1 and a negative one for
ε = −1, but in the synchronous coordinate system these solutions lie in the disjoint
intervals | t | > a and | t | < a.

Let us consider transformation of the variables of the observer coordinate system
(xα, t) → (xα, τ ) determined by the equation

dτ = ρu4dt.

The explicit dependence of the function τ (t) is given by relations (6.51). A
calculation of the quantity

√−g g4i in the coordinate system with the variables xα,
τ gives

(
√−g g4α)′ = 0, (

√−g g44)′ = const.
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From this it follows that the following equation holds in the coordinate system with
the variables xα and τ

[
∂j (

√−g gij )
]′ = d

dτ
(
√−g g4i )′ = 0.

Thus, the coordinate system with the variables xα , τ is the harmonic system. The
transformation from the synchronous coordinate system to the harmonic system
in the solutions obtained is carried out by the change of the variable t → τ and
the usual tensor transformation of components πi , ξi , σi , ui , gij . In particular, for
component T44 of the energy-momentum tensor in the harmonic coordinate system
is obtained the following expression

T44 = 3�m2a2

4C2
u

sinh−2 a

μ
τ for ε = 1,

T44 = −3�m2a2

4C2
u

cosh−2 a

μ
τ for ε = −1. (6.68)

The solutions with the each value ε = 1 and ε = −1 in the harmonic coordinate
system exist in all interval of time (−∞ < t < +∞). The metric in the harmonic
coordinate system has the singular points at τ = ±∞ in the case ε = −1, and in
the case ε = 1 there are the singular points at τ = 0 and τ = ±∞. From (6.68) it
follows that the positive density of the energy T44 in the harmonic coordinate system
corresponds to the value ε = 1.

When transforming t → τ the spatial part of the metric does not change.

6.3 Exact Solutions of Some Nonlinear Differential Spinor
Equations

As an example of the use of the tensor characteristics of spinors we give below
a number of exact solutions of nonlinear spinor equations, used in the theory of
elementary particles. At first we note the following identities connecting the first
rank spinor ψ and tensors C, D determined by the spinor

Si
∗
γ i

DAψ
A =

(
ΩeDA + Nγ 5

DA

)
ψA,

jiγ
i
DAψ

A = i
(
ΩeDA + Nγ 5

DA

)
ψA,

Siγ
i
DAψ

A = iji
∗
γ i

DAψ
A,

Ciγ
i
DAψ

A = 0,

Ciγ
i
DAψ

+A = 2
(
ΩeDA + Nγ 5

DA

)
ψA. (6.69)
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The first and second identities in (6.69) are obtained by contracting identities (C.2
d, c) with the spinor components ψ+DψEψA with respect to the indices D and
A. The third identity in (6.69) are obtained by contracting identities (C.2 b) with
the spinor components ψ+DψEψA. The fourth identity in (6.69) are obtained by
contracting identities (C.2 a) with the spinor components ψDψEψA. For receiving
the last identities in (6.69) it is enough to contract (C.2 c) with components of spinor
ψDψEψ+A.

Consider the following nonlinear spinor equations

γ i∇iψ + λ(ρ)Si ∗
γ iψ = 0. (6.70)

Here λ = λ(ρ) is the given function of invariant ρ = (
SiS

i
)1/2

; ∇i is the symbol
of the covariant derivative calculated in generally an arbitrary curvilinear coordinate
system with the variables xi(i = 1, 2, 3, 4) in the Minkowski space.

It follows from identities (6.69) that Eq. (6.70) can be written also in the form

γ i∇iψ − iλ(ρ)jiγ iψ = 0 (6.71)

or in the form

γ i∇iψ + λ(ρ)
(
ΩI + Nγ 5

)
ψ = 0. (6.72)

The equations for the contravariant components ψ̄ = ‖ψ+A‖ of the conjugate
spinor field, corresponding to Eqs. (6.70)–(6.72), are written as follows

γ i∇i ψ̄ + λ(ρ)Si ∗
γ iψ̄ = 0,

γ i∇i ψ̄ + iλ(ρ)j i ∗
γ iψ̄ = 0,

γ i∇i ψ̄ + λ(ρ)
(
ΩI + Nγ 5)ψ̄ = 0.

Lagrangian Λ, corresponding to Eqs. (6.70), one can define as

Λ = 1

2

(
ψ+γ i∇iψ − ∇iψ

+ · γ iψ
)

+
∫

ρλ(ρ) dρ. (6.73)

Due to Eqs. (6.70) we have

Λ = −λρ2 +
∫

ρλ(ρ) dρ. (6.74)

The current and spin of the field described by Eqs. (6.70) are defined, respec-

tively, by the vectors with components js = iψ+γsψ and Si = ψ+ ∗
γ iψ . The com-
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ponents of the energy-momentum tensor, corresponding to the Lagrangian (6.73),
are defined as follows

Pi
j = 1

2

(
ψ+γ j∇iψ − ∇iψ

+ · γ jψ
)

+ δ
j

i

(
λρ2 −

∫
ρλ(ρ) dρ

)
.

Equations (6.70) for λ = const are the Heisenberg equations [17]. In this case
components Pi

j are written in the form

Pi
j = 1

2

(
ψ+γ j∇iψ − ∇iψ

+ · γ jψ
)

+ 1

2
λSmSmδ

j
i .

Here it is used equality SmSm = ρ2.
Equation (6.70) and Lagrangian (6.73) are invariant under a group of the

transformations

ψ ′ = eiM(aI + bγ 5)ψ, (6.75)

where M is an arbitrary real number, a and b are real numbers satisfying the
equation a2+b2 = 1. A direct verification shows that the components of the vectors
j i , Si are invariant under transformation (6.75):

j ′i = j i, S′i = Si.

The group of the gauge transformations (6.75) has an one-parameter subgroup4

ψ ′ = eiνϕ
(
I cosμϕ + γ 5 sin μϕ

)
ψ ≡ exp

[
(μγ 5 + iνI)ϕ

]
ψ, (6.76)

where ϕ is a group parameter, μ and ν are arbitrary real numbers. An infinitesimal
transformation, corresponding to the transformation group (6.76), has the form

δψ = (
iνI + μγ 5)ψδϕ.

4As known, the exponential function of the matrix argument is defined as

exp αγ 5 = I +
∞∑

n=1

1

n ! (αγ
5)n.

Bearing in mind that (γ 5)2 = −I , we find

expαγ 5 = I

(
1 − 1

2 ! α
2 + 1

4 ! α
4 − · · ·

)

+ γ 5
(
α − 1

3 ! α
3 + 1

5 ! α
5 − · · ·

)
= I cos α + γ 5 sinα.
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According to the Noether theorem due to the invariance of the Lagrangian (6.73)
with respect to the transformation group (6.76), the conservation law is fulfilled

∇i

(
νj i + μSi

) = 0,

Since the coefficients μ and ν are arbitrary, from this equation it follows:

∇ij
i = 0, ∇iS

i = 0.

Equation (6.70) and Lagrangian (6.73) are invariant also under following group
of the gauge transformations5

ψ ′ = αψ − βψ̄. (6.77)

Here α and β are arbitrary in general complex numbers satisfying the condition
α̇α − β̇β = 1, ψ̄ is the column of the contravariant component of the conjugate
spinor ψ+A.

Transformation (6.77) is the special case of transformation (3.163) for α = δ̇

and β = γ̇ . Using relations (3.163), (3.165), (3.170), (3.171) we find that under
transformation (6.77) the invariants Ω , N and the vector components Si do not
change

Ω ′ = Ω, N ′ = N, S′i = Si .

Group (6.77) has one-parameter subgroup of the form

ψ ′A = ψA coshϕ + ψ+Aeiχ sinhϕ, (6.78)

where ϕ is a group parameter, χ is an arbitrary real number. The infinitesimal
transformation corresponding to the group (6.78) is

δψ = eiχψ̄δϕ, δψ̄ = e−iχψδϕ.

5It is easy to show that Eq. (6.70) does not invariant[83] under the Pauli group

ψ ′A = αψA − iβγ 5A
Bψ+B,

.
αα + .

ββ = 1.

However, as is well-known [17], quantized equations

γ i∇iψ + λ : Si
∗
γ iψ := 0

are invariant under the Pauli group. Thus, a symmetry group of nonlinear spinor equations can
change at their quantization. We note in this regard that the opinion is sometimes expressed about
impossibility changing the symmetry group of the equations at them quantization (see e.g. the
article [17] devoted to properties of nonlinear spinor equations).
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Using relations (3.170) and (3.171) is easy to find that the components of the
vector e−iχCj + eiχĊj do not change under transformation (6.78):

(
e−iχCj + eiχ Ċj

)′ = e−iχCj + eiχĊj .

Due to the invariance of the Lagrangian (6.73) under the transformation
group (6.78), the conservation law is fulfilled

∇j

(
e−iχCj + eiχĊj

) = 0.

1. Let us consider a transformation ψ◦ → ψ:

ψ = exp

[
γ 5

∫ (
ηS◦

i + νj◦
i

)
dxi + iI

∫ (
νS◦

i + θj◦
i

)
dxi

]
ψ◦, (6.79)

where ν = ν(xi) is an arbitrary differentiable function; η = η(xi) and θ = θ(xi)

are the differentiable functions connected by the relation θ − η = λ(ρ◦). Thus, the
transformation ψ◦ → ψ depends on two arbitrary functions. The components of the
vectors j◦

i , S◦
i and the scalar ρ◦ are defined by the spinor field ψ◦:

j◦
i = iψ+◦ γiψ◦, S◦

i = ψ+◦
∗
γ iψ◦, ρ◦ =

(
S◦
i S

i◦
)1/2

.

Integration in (6.79) is taken over some in general an arbitrary sufficiently smooth
path in the Minkowski space. In order to the integrals in (6.79) do not depend on the
path of integration, it is necessary and sufficient that the equations

∂i

(
ηS◦

j + νj◦
j

)
= ∂j

(
ηS◦

i + νj◦
i

)
,

∂i

(
νS◦

j + θj◦
j

)
= ∂j

(
νS◦

i + θj◦
i

)
. (6.80)

be satisfied. The components of the vectors ji and Si are invariant under transfor-
mation (6.79)

ji = iψ+γiψ ≡ iψ+◦ γiψ◦ = j◦
i ,

Si = ψ+ ∗
γiψ ≡ ψ+◦

∗
γ iψ◦ = S◦

i , (6.81)
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while the invariants Ω = ψ+ψ and N = ψ+γ 5ψ of the spinor ψ depend on the
integral

∫ (
ηS◦

i + νj◦
i

)
dxi:

Ω = Ω◦ cos

[
2
∫ (

ηS◦
i + νj◦

i

)
dxi

]
+ N◦ sin

[
2
∫ (

ηS◦
i + νj◦

i

)
dxi

]
,

N = −Ω◦ sin

[
2
∫ (

ηS◦
i + νj◦

i

)
dxi

]
+ N◦ cos

[
2
∫ (

ηS◦
i + νj◦

i

)
dxi

]
.

(6.82)

Here Ω◦ = ψ+◦ ψ◦, N◦ = ψ+◦ γ 5ψ◦.
A calculation of the energy-momentum tensor components Pi

j under transfor-
mation (6.79) gives

Pi
j = 1

2

[
ψ+◦ γ j∇iψ◦ − (∇iψ

+◦
)
γ jψ◦

]

+ (
ηS◦

i + νj◦
i

)
Sj◦ + (

νS◦
i + θj◦

i

)
jj◦ − Λ(ρ◦)δji , (6.83)

where function Λ = Λ(ρ) is defined by equality (6.74).
Let us calculate result of action of the operator γ i∇i upon the function ψ ,

determined by equality (6.79). We have identically

γ i∇iψ = γ i
[(

ηS◦
i + νj◦

i

)
γ 5 + i

(
νS◦

i + θj◦
i

)
I
]
ψ

+ exp

[
−γ 5

∫ (
ηS◦

i + νj◦
i

)
dxi + iI

∫ (
νS◦

i + θj◦
i

)
dxi

]
γ j∇jψ◦. (6.84)

By means of identity (6.69), (6.81), we transform the first term on the right-hand
side of Eq. (6.84) to the form

γ i
[(

ηS◦
i + νj◦

i

)
γ 5 + i

(
νS◦

i + θj◦
i

)
I
]
ψ = (η − θ) Si ∗

γ iψ = −λSi ∗
γ iψ.

Therefore equality (6.84) can be rewritten in the form

γ i∇iψ + λSi ∗
γ iψ

≡ exp

[
−γ 5

∫ (
ηS◦

i + νj◦
i

)
dxi + iI

∫ (
νS◦

i + θj◦
i

)
dxi

]
γ j∇jψ◦. (6.85)

If the functions ψ◦ in (6.79) satisfy the linear equation

γ i∇iψ◦ = 0, (6.86)
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then from (6.85) it follows that the functions ψ , determined in terms of ψ◦ in
according to equalities (6.79), are a solution of Eqs. (6.70).

If spintensors γ i are defined by equalities (3.24), and η = const, ν = const,
θ = const, then the spinor ψ◦ in solution (6.79) in the Cartesian coordinate system
xi is possible to define, in particular, as follows

ψ◦ =

∥
∥
∥
∥
∥∥
∥
∥

ψ1◦ (x3 − x4)

ψ2◦ (x3 + x4)

ψ3◦ (x3 + x4)

ψ4◦ (x3 − x4)

∥
∥
∥
∥
∥∥
∥
∥

, (6.87)

where ψA◦ are arbitrary differentiable functions of the arguments noted in (6.87)
satisfy the relations

(η − ν)ψ̇1◦ψ2◦ + (η + ν)ψ̇3◦ψ4◦ = const,

(ν − θ)ψ̇1◦ψ2◦ + (ν + θ)ψ̇3◦ψ4◦ = const, (6.88)

which, according to definitions (3.65), are equivalent to equalities

ηS◦
1 + νj◦

1 = const, ηS◦
2 + νj◦

2 = const,

νS◦
1 + θj◦

1 = const, νS◦
2 + θj◦

2 = const.

It is not difficult to verify that formulas (6.87), (6.88) and the equalities η =
const, ν = const, θ = const determine in the Cartesian coordinate system some

set of partial solutions of Eqs. (6.86), (6.80).
A study of the functional equations (6.88) is quite elementary and we shall not

give here a more detailed analysis of these equations. Note only that from these
equations it follows or the existence of linear connections between the functions ψ1◦
and ψ4◦ and between the functions ψ2◦ and ψ3◦ or their constancy; perhaps also the
equality to zero some functions ψA◦ at arbitrariness of the anothers. For example,
ψA◦ is possible to determine by the relation

ψ◦ =

∥
∥
∥
∥∥
∥
∥
∥

ψ1◦ (x3 − x4)

0
ψ3◦ (x3 + x4)

0

∥
∥
∥
∥∥
∥
∥
∥

or ψ◦ =

∥
∥
∥
∥∥
∥
∥
∥

0
ψ2◦ (x3 + x4)

0
ψ4◦ (x3 − x4)

∥
∥
∥
∥∥
∥
∥
∥

,

where ψA◦ are arbitrary differentiable functions.
The physical meaning of solutions (6.79) is defined by relations (6.81)–(6.83)

also depends on the choice of the functions ψ◦. In particular, if ψ◦ and η, ν, θ are
constants, then solutions (6.79) determine plane, monochromatic waves. If ψ◦ to
take in the form (6.87), then the vectors j i and Si according to formulas (6.81) are
represented in the form of an plane progressive wave.



320 6 Exact Solutions of Spinor Equations

2. Using relations (6.69), similarly to the derivation of solution (6.79), it is
possible to show that the spinor equations (6.70) admit exact solutions of the form6

ψ = exp

(
γ 5

∫
ηS◦

j dxj

)(
ψ◦ cosh

∫
bj dx

j +ψ̄◦eiχ sinh
∫

bj dxj

)
, (6.89)

where the components of the vectors S◦
j , bj are defined by the equalities

S◦
j = ψ+◦

∗
γ jψ◦, bj = −1

2
θ
(
e−iχC◦

j + eiχ Ċ◦
j

)
. (6.90)

In formulas (6.89), (6.90) θ = θ(xi) and η(xi) are arbitrary real differentiable
functions, connected by the relation θ − η = λ(ρ◦); χ is an arbitrary real constant.
The vector components C◦

j in (6.90) are defined by the field ψ◦:

C◦
j = ψT◦ Eγjψ◦.

As ψ◦ in (6.89) and (6.90) we can take any solution of Eqs. (6.86) which satisfies
the independence conditions of the integrals in (6.89) of the integration path in the
Minkowski space

∂ibj = ∂j bi, ∂i
(
ηS◦

j

) = ∂j
(
ηS◦

i

)
.

For solutions (6.89) the vector components Si are defined by functions ψ◦

Si = ψ+ ∗
γ iψ ≡ ψ+◦

∗
γ iψ◦ = S◦

i ,

while the invariants Ω , N of the spinor field ψ are determined by the relations

Ω = Ω◦ cos

(
2
∫

ηS◦
j dxj

)
+ N◦ sin

(
2
∫

ηS◦
j dxj

)
,

N = −Ω◦ sin

(
2
∫

ηS◦
j dxj

)
+ N◦ cos

(
2
∫

ηS◦
j dxj

)
, (6.91)

in which Ω◦ = ψ+◦ ψ◦, N◦ = ψ+◦ γ 5ψ◦.
When transforming it is necessary to use also the relation

e−iχCj + eiχ Ċj ≡ e−iχC◦
j + eiχ Ċ◦

j ,

in which the vector components Cj are defined by the functions ψ .

6The more general solutions of this type see in [79, 82].
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If matrices γ i are determined according to (3.24) and λ = const, η = const, then
the spinor components ψ◦ in solution (6.89), in particular, is possible to define in
the Cartesian coordinate system by formula (6.87), in which arbitrary functions ψA◦
satisfy the relations

S◦
1 = const, S◦

2 = const,

e−iχC◦
1 + eiχ Ċ◦

1 = const, e−iχC◦
2 + eiχ Ċ◦

2 = const .

3. Let us consider transformation ψ◦ → ψ:

ψ = exp

(
γ 5

∫
ηS◦

j dxj

)

×
[
αψ◦ exp

(
i
∫

θj◦
s dxs

)
+ μψ̄◦ exp

(
− i

∫
θj◦

s dxs

)]
, (6.92)

where α and μ are some generally complex numbers satisfying the condition α̇α −
μ̇μ = 1; θ(xi) and η(xi) are arbitrary real differentiable functions, connected by
the relation θ − η = λ(ρ◦); the vector components S◦

j , j◦
s are expressed in terms of

the spinor field ψ◦ as follows

S◦
j = ψ+◦

∗
γjψ◦, j◦

s = iψ+◦ γsψ◦.

The vector components Sj , corresponding to the field ψ , are expressed in terms

of the field ψ◦: Sj = ψ+ ∗
γ jψ ≡ ψ+◦

∗
γ jψ◦. The invariants Ω and N of the spinor

field ψ are expressed in terms of the field ψ◦ by relations (6.91).
If the functions ψ◦ in (6.92) satisfy Eq. (6.86) and the independence conditions

of integrals in (6.92) from the path of integration in the Minkowsky space

∂i
(
ηS◦

j

) = ∂j
(
ηS◦

i

)
, ∂i

(
θj◦

j

) = ∂j
(
θj◦

i

)
,

then the functions ψ determined by formulas (6.92), are the exact solution of
Eqs. (6.70).

If as the function ψ◦ take functions (6.87), satisfying relations

ηS◦
1 = const, ηS◦

2 = const,

θj◦
1 = const, θj◦

2 = const,

then the vector components j i and Si corresponding to such solutions are repre-
sented in the form of the plane progressive waves.

Note that if in functions (6.89) and (6.92) we put η = 0, and in functions (6.79)
η = ν = 0, then these functions determine solutions of Eqs. (6.70) and in a case
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when the coefficient λ in Eq. (6.70) depend arbitrarily on the invariants Ω , N of the
field ψ .

Transformations (6.79), (6.89) and (6.92) reduce the solution of Eqs. (6.70) to the
solution of Eqs. (6.86) and independence conditions of integration in these transfor-
mations from the integration path. It is obvious that if in formulas (6.79), (6.89), we
put (6.92) λ = 0, these transformations will determine solutions equations (6.86).

It is clear that functions (6.79), (6.89) and (6.92) for λ = 0 can be used as
functions ψ◦ in transformations (6.79), (6.89) and (6.92). In this way, we can obtain
another exact solutions of Eq. (6.70).

It is easy to show that transformations (6.79), (6.89) and (6.92) applied to the
equations

γ i∇iψ + mψ + λ(ρ)Si ∗
γ iψ = 0, (6.93)

reduce the solution of Eqs. (6.93) to the solution of the Dirac equation for the
functions ψ◦:

γ i∇iψ◦ + mψ◦ = 0

6.4 Integrals of the Differential Equations, Describing
Relativistic Models of the Magnetizable Spin Fluids

In this section differential equations, describing some models of the magnetizable
spin fluids in electromagnetic field in special relativity theory are considered. The
systems of partial differential equations describing these models are usually very
complicated, and a solution of these equations is a mathematically very complicated
problem. The use of the method of the tensor representation of spinors in some quite
general cases allows to simplify integration of the specified equations.

Below, using results of Sects. 6.3 and 6.5 some integrals of the equations defining
models of the magnetized spin fluids, characterized by the condition constancy of
the module of the vector of specific density of magnetization are formulated. In the
following section by means of the found integrals a number of exact solutions of
considered equations is established

6.4.1 Relativistic Equations Describing the Magnetizable Spin
Fluids

We assume further that the physical space-time is the four-dimensional pseudo-
Euclidean Minkowski space referred to a Cartesian inertial coordinate system of
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an observer. Let us consider models of the spin fluids defined by the Lagrangian7

Λ = 1

8π
F ij

(
∂iAj − ∂jAi − 1

2
Fij

)

− Mij ∂iAj + ηuiMi − 1

g
MiΩi + Λ0

(
ρ, s, ωi ,Mi, g

ij
)
, (6.94)

where g is a phenomenological constant. The functional δW∗ in the variational
equation (A.49) we determine by the relation

δW∗ =
∫

V4

(− ρT δs + τi
j∇j δx

i
)
dV4. (6.95)

For the models under consideration the vector of the spin is proportional to the
vector of the volume density of the fluid magnetization gKi = Mi . The tensor of
the volume density of the internal angular momentum for the considered spin fluids
is defined by components Kij = g−1Mij .

A complete system of dynamic and kinematic differential equations, correspond-
ing to the considered models of the magnetizable spin fluids, has the form

a. ∂jH
ij = 0, ∂iFjk + ∂jFki + ∂kFij = 0,

b. ∂jPi
j = 0, ∂iρu

i = 0,

c. ρ
d

dτ

1

ρ
Mi = g

∗
F ijM

j ,

d. ρT
ds

dτ
= −cui∇j τi

j , ρT = ∂Λ0

∂s
.

(6.96)

The components of the total energy-momentum tensor Pi
j and the components of

the effective field tensor
∗
F ij in Eqs. (6.96) are defined as follows

Pi
j = Pi

j

(f ) + (p + e)uiu
j + pδ

j
i − τi

j + 1

g
Misu

j d

dτ
us + 1

2
Sisu

j d

dτ
us+

+ 1

2
cuj∇kSi

k − 1

2
cSjs∇ius − ujuk

(
Mi

∂Λ0

∂Mk

+ ωi
∂Λ0

∂ωk

)
,

∗
F ij = σm

i σn
j

(
Fmn + εmnksu

k ∂Λ0

∂Ms

)
+ 1

g

(
ui

d

dτ
uj − uj

d

dτ
ui

)
. (6.97)

7A variational derivation of the differential equations used here that describe models of the
magnetizable spin fluids in an electromagnetic field is contained in Appendix A. About parameters
appearing in Lagrangian (6.94) and functional (6.95), see Appendix A.
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Here the energy–momentum tensor components of the electromagnetic field Pi
j

(f )

are defined by equality (A.72), for quantities p, e, and Sij in (6.97) according to
definitions (A.61) we have

p = ρ2 ∂Λ0/ρ

∂ρ
+ Mi

∂Λ0

∂Mi

− 1

2
BiM

i,

e = Λ0 − 1

2
BiM

i − ωi
∂Λ0

∂ωi

,

Sij = εijksu
k ∂Λ0

∂ωs

. (6.98)

The vector components of the intrinsic rotation Ωi are eliminated from Eqs. (6.96)
to (6.98) by means of the equation

Bi = − 1

g
Ωi + σ i

s

∂Λ0

∂Ms

, (6.99)

which is obtained from the second equation in (A.59 e).
In Eqs. (6.97) the components Mij of the volume density tensor of the fluid

magnetization are connected components Mi of the volume density vector of
magnetization by the equality

Mij = εijksu
sMk, Mi = 1

2
εijksu

sMjk. (6.100)

It follows from definition (6.100) that in the proper basis the matrix of compo-
nents M̆ij is defined only by the components M̆1, M̆2, and M̆3 of three-dimensional
vector of the volume density of the fluid magnetization

M̆ij =

∥∥
∥
∥
∥
∥∥
∥

0 M̆3 −M̆2 0
−M̆3 0 M̆1 0
M̆2 −M̆1 0 0
0 0 0 0

∥∥
∥
∥
∥
∥∥
∥

.

The set of Eqs. (6.96) contains the first and second pairs of the Maxwell’s
equations for the electromagnetic field, the energy-momentum equation, the angu-
lar momentum equation, the continuity equation for the mass density of the
fluid, the temperature equation and the entropy balance equation. In Eqs. (6.96)
unknown required functions are the mass density ρ(xi), the components of the
four-dimensional velocity vector of the fluid ui(xj ), the components of the four-
dimensional vector of the volume density of the fluid magnetization Mi(x

j ),
the temperature T (xi), the specific entropy density s(xi) and the components of
the tensor electromagnetic field Fij (x

i). The components of the four-dimensional
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velocity vector ui and the components of the four-dimensional magnetization vector
Mi , appearing in Eq. (6.96), according to their definition are connected by the
algebraic equations

uiu
i = −1, uiM

i = 0. (6.101)

To complete the set of Eqs. (6.96)–(6.99) it is necessary to specify the tensor
components τi

j , determining viscosity and heat conductivity of the fluid.

6.4.2 Integrals of the Differential Equations Describing
the Magnetizable Spin Fluids

Let us introduce in the Minkowski space the four-component spinor field in the
Cartesian coordinate system of the observer by components ψ(xi) and let ψ+(xi)

be the components of the conjugate spinor field. For mass density ρ, velocity
vector components ui , vector component magnetization Mi and for entropy s in
Eqs. (6.96)–(6.98) we put by definition

ρuj = iψ+γ jψ, Mi = mψ+ ∗
γ iψ,

ρ exp iη(s) = ψ+ψ + iψ+γ 5ψ. (6.102)

Here γ j are the Dirac matrices, the matrices
∗
γ i , γ 5 are defined by equali-

ties (3.9); m is a constant; η(s) is the given differentiable function with the nonzero
derivative in all range s.

Definitions (6.102) imply that the fluid density ρ is expressed in terms of the
spinor fields ψ , ψ+ thus

ρ =
[
(ψ+ψ)2 + (ψ+γ 5ψ)2

]1/2
.

Due to definitions (6.102), Eqs. (6.101) are simply identities, while the compo-
nents of the magnetization vector Mi satisfy an additional algebraic equation

MiM
i = ρ2m2. (6.103)

Parametrization (6.102) imposes no other restrictions on the components ρ, uj ,
Mi , and s, except (6.101), (6.103).

Let us consider the following system of equations

γ j ∂jψ +
(
�I + i�j γ

j + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0,

∂iFjk + ∂jFki + ∂kFij = 0, ∂j
(
F ij − 4πMij

) = 0. (6.104)
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where the real coefficients �, �i ,
∗
�i , and

∗
� entering in Eq. (6.104), are determined

by the relations

� = g

2mcρ2

{
− Ω

(
ρ
∂Λ0

∂ρ
+ 1

2
FijM

ij

)

+ N

[
1

∂η/∂s

(
∂Λ0

∂s
− ρT

)
+ c

g
∂iM

i

]}
,

∗
� = g

2mcρ2

{
− N

(
ρ
∂Λ0

∂ρ
+ 1

2
FijM

ij

)

− Ω

[
1

∂η/∂s

(
∂Λ0

∂s
− ρT

)
+ c

g
∂iM

i

]}
,

�i = g

2mcρ

{
ρGi + c

2
σij ε

jnks

[
∂Λ0

∂ωn
∂kus + ∂k

(
∂Λ0

∂ωn
us

)]

+ 1

2
εjksiF

jkMs

}
+ 1

2mcρ
σij

(
c∂sM

js + Mjs d

dτ
us

)
+ ∂iγ, (6.105)

∗
�i = g

2c

(
1

2
εijksF

jkus − ∂Λ0

∂Mi

)
+ 1

2

∂η

∂s
∂is + 1

2
εijksu

j ∂kus .

Here γ = γ (xi) is an arbitrary differentiable function; quantities Ω and N are
defined by equalities (3.58) and (3.59); the components ρ, ui , Mi , s in (6.105) are
expressed in terms of the fields ψ and ψ+ by formulas (6.102); σij = gij + uiuj ,
gij are the covariant components of the metric tensor of the space-time. The
components Mij are connected with Mi by relation (6.100).

To determine the quantities Gi , entering into coefficients �, we introduce the
following equations, linear in Gi :

ρuj
(
∂jGi − ∂iGj

)+ ρT ∂is + ∂j τi
j = 0. (6.106)

The physical meaning of Eqs. (6.106) and quantities Gi is explained below.
Thus, Eqs. (6.104) and (6.105) with the given functions Gi constitute a system

differential equations for determining the spinor field ψ(xi), temperature T (xi) and
components Fij (x

i) of the electromagnetic field tensor.
Equations (6.104) and (6.105) can be obtained by means of the variational

equation (A.49), in which the Lagrangian Λ is determined by the relation

Λ = 1

8π
F ij

(
∂iAj − ∂jAi − 1

2
Fij

)
− Mij ∂iAj − c

g
Mi∂iη − 2

g
Miωi

− mc

g

(
ψ+γ i∂iψ − ∂iψ

+ · γ iψ
) + Λ0

(
ρ, s, ωi ,Mi, g

ij
)
, (6.107)
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and the functional δW∗ is determined by equality (6.95). The functions ρ, ui ,
Mi , and s in (6.107) and in δW∗ are expressed in terms of ψ and ψ+ by
formulas (6.102).

If equalities (6.102) are carried out, then by virtue of identity (5.70) the
Lagrangian (6.107) identically coincides with Lagrangian (6.94).

Let us show that all equations in (6.96) for arbitrary functions Gi , τij , and T ,
satisfying Eqs. (6.106) and (6.105) are a corollary of Eqs. (6.104), if the density ρ,
the entropy s, the velocity ui and the fluid magnetization Mi are defined by the
fields ψ and ψ+ by equalities (6.102). For this purpose we consider a system of the
real tensor equations (5.78) for �ij = 0 and α = −mc/g, which are carried out due
to the spinor equations (6.104) and (6.105).

It is easy to see that the fourth equation in (5.78), with the coefficients �, �i ,
∗
�i ,

and
∗
� defined by equalities (6.105), can be written as

1

2
∂iS

i − �N + ∗
�Ω = 1

2m
∂iM

i + g

2mc

[
1

∂η/∂s

(
−∂Λ0

∂s
+ ρT

)
−

− c

g
∂iM

i

]
= g

2mc∂η/∂s

(
−∂Λ0

∂s
+ ρT

)
= 0.

From this it follows

−∂Λ0

∂s
+ ρT = 0.

This means that the equation for the temperature T in (6.96) is a corollary of
Eqs. (6.104) and (6.105).

The first equation in (5.78), according to definitions (5.19) and (6.102), is written
in the form

∂ij
i = ∂iρu

i = 0.

This means that the continuity equation in (6.96) also is a corollary of
Eqs. (6.104) and (6.105).

We now calculate the components of the antisymmetric tensor
∗
F ij entering the

third equation in (5.78) and determined by formulas (5.75). Substituting �ij = 0

and the quantity
∗
�i determined by (6.105) into definition (5.75) and doing simple

transformations we find for components
∗
F ij

∗
F ij = c

g

[
εijksu

k
(− 2

∗
�s + ∂sη

)− ∂iuj + ∂jui

]

= σm
i σn

j

(
Fmn + εmnksu

k ∂Λ0

∂Ms

)
+ 1

g

(
ui

d

dτ
uj − uj

d

dτ
ui

)
. (6.108)
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The components
∗
F ij , determined by formula (6.108), coincide with those

determined by formulas (6.97). Thus, the angular momentum equation in (6.96)
is a corollary of Eqs. (6.104) and (6.105).

Consider now the second equation (5.78) for α = −mc/g, �ij = 0 which is now
conveniently written down in the form

∂j

[
Pi

j − 2mc

g
δ
j
i

(
�Ω + �sj

s + ∗
�sS

s + ∗
�N

)
]

= −2mc

g

(
�∂iΩ + �j ∂ij

j + ∗
�j∂iS

j + ∗
�∂iN

)
. (6.109)

Substituting �ij = 0, α = −mc/g, and the coefficients �, �i ,
∗
�i ,

∗
� determined

by formulas (6.105), into definition (5.67) of components Pi
j , for the components

of the tensor entering the left-hand side of Eq. (6.109), we find

Pi
j − 2mc

g
δ
j
i

(
�Ω + �sj

s + ∗
�sS

s + ∗
�N

)

= − c

g

[
us∂iM

js + uj∂sM
is − Mj∂iη + uj

(
Miu

k − uiM
k
)
∂kη

]

− 2mc

g

[
σ

j
i

(
Ω� + N

∗
�
)+ (

δ
j
i u

n − δni u
j
)
(
ρ�n − 1

2m
εnpqsM

pq ∗
�s

)]

= c

g

[
− us∂iM

js + Mj∂iη + 1

c
ujMik

d

dτ
uk − δ

j

i

(
Mk∂kη + Mks∂kus

)
]

+ 2mc

g

(− δ
j
i ρu

s∂sγ + ρuj ∂iγ
)+ ρ

∂Λ0

∂ρ
σ

j
i + ρ

(
ujGi − δ

j
i Gmum

)

+ 1

4π
ujum

(
FinH

mn − FmnHin

)− 1

2
σ

j
i M

ksFks

+ (
Mkσ

j

i − Miu
juk

) ∂Λ0

∂Mk

− ujωiuk

∂Λ0

∂ωk

+ 1

2
ujSim

d

dτ
um + c

2
uj∂kSi

k.

(6.110)

Let us transform an expression for components Fi entering the right-hand side of
Eq. (6.109)

Fi = −2mc

g

(
�∂iΩ + �j ∂ij

j + ∗
�j∂iS

j + ∗
�∂iN

)
,
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The terms with the electromagnetic field entering into Fi , by means of Maxwell’s
equations one can transform to the form

1

2ρ2 F
sjMsj

(
Ω∂iΩ + N∂iN

)

+ 1

2
εjksq

(
− 1

ρ
F jkMs∂ij

q + mFjkus∂iS
q

)
≡ −1

2
Fjk∂iMjk

= −∂j

[
1

4π

(
FinH

jn − 1

4
FsmHsmδ

j
i

)
+ 1

4
δ
j
i FsmHsm

]
. (6.111)

For the terms in Fi with ρT and Gi taking into account the continuity equation,
Eq. (6.106) and the equality

∂is = Ω∂iN − N∂iΩ

ρ2∂η/∂s
,

which follows from definition (6.102) of η(s), we find

T

ρ∂η/∂s

(
N∂iΩ −Ω∂iN

)−Gj∂ij
j = ∂j

(
τi

j + ρujGi − δ
j

i ρu
mGm

)
. (6.112)

and for the terms in Fi with the function Λ0:

1

ρ2∂η/∂s

∂Λ0

∂s

(− N∂iΩ + Ω∂iN
)−

− c

2ρ
σjqε

qnks

[
∂Λ0

∂ωn
∂kus + ∂k

(
∂Λ0

∂ωn
us

)]
∂ij

j − ∂Λ0

∂ρ
uj∂ij

j + m
∂Λ0

∂Mj

∂iSj ≡

≡ −∂j

(
− c

2
Sjm∂ium − Λ0δ

j
i

)
. (6.113)

The terms in Fi with an arbitrary function γ are transformed as follows

∂qγ ∂ij
q = −∂j

(
ρuj∂iγ − δ

j
i ρu

s∂sγ
)
. (6.114)

The remained terms in Fi can be written in the form

− c

gρ2

(
N∂iΩ − Ω∂iN

)
∂jM

j

− 1

gρ
σqj

(
c∂sM

js + Mjs d

dτ
us

)
∂ij

q − mc

g

(
∂qη + εqjksu

j ∂kus
)
∂iS

q

= −∂j

{
c

g

[
− Mj∂iη − Mjs∂ius + δ

j
i

(
Mk∂kη + Mks∂kus

)
]}

. (6.115)
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Using relations (6.111)–(6.115), we represent the expression for Fi in the form

Fi = −∂jNi
j , (6.116)

where

Ni
j = 1

4π

(
FinH

jn − 1

4
δ
j
i FsmHsm

)
+ 1

4
δ
j
i M

smFsm − τi
j − Λ0δ

j
i

+ c

g

[− Mj∂iη − Mjs∂ius + δ
j
i

(
Mk∂kη + Mks∂kus

)]

+ 2mc

g

(
ρuj∂iγ − δ

j
i ρu

s∂sγ
)− c

2
Sjm∂ium − ρujGi + δ

j
i ρu

mGm. (6.117)

Bearing in mind (6.110), (6.116), and (6.117), the second equation in (5.78) can be
written down as

∂jPi
j = 0 (6.118)

with components Pi
j = Pi

j − 2mc

g

(
�Ω + �sj

s + ∗
�sS

s + ∗
�N

)
δ
j
i + Ni

j defined

by the equality

Pi
j = Pi

j

(f ) + (p + e)uiu
j + pδ

j
i − τi

j + 1

g
ujMik

d

dτ
uk + 1

2
ujSis

d

dτ
us+

+ c

2
uj∇kSi

k − c

2
Sjs∇ius − ujuk

(
Mi

∂Λ0

∂Mk

+ ωi
∂Λ0

∂ωk

)
, (6.119)

where

p = ρ2 ∂Λ0/ρ

∂ρ
+ Mi

∂Λ0

∂Mi

− 1

2
BiM

i,

e = Λ0 − 1

2
BiM

i − ωi
∂Λ0

∂ωi

, Sij = εijksu
k ∂Λ0

∂ωs

.

A comparison shows that components Pi
j , determined according to (6.119)

satisfying Eq. (6.118), in accuracy coincide with components Pi
j , determined by

formulas (6.97) and entering Eqs. (6.96). This means that the energy-momentum
equations in (6.96) are a corollary of Eqs. (6.104) and (6.105).

It is easy to see that the entropy balance equation in (6.96) are obtained by
contracting of Eq. (6.106) with components of the velocity vector ui .

Thus, it is shown that all equations in (6.96) are satisfied by virtue of Eqs. (6.104)
and (6.105) provided (6.106), if the mass density, entropy, velocity and magnetiza-
tion of the fluid are expressed in terms of the fields ψ and ψ+ by relations (6.102).
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It is easy to see that if the coefficients Gi in (6.105) contain derivatives of the
determining parameters ρ, ui , Mi , and s not higher than the second order, then

the spinor equations in (6.104) with the coefficients �, �i ,
∗
�i , and

∗
�, defined by

equalities (6.105) are the second order differential equations in the components of
the spinor ψ and contain the components of the electromagnetic field tensor Fij

without derivatives.
It is obvious, if in the system of hydrodynamic equations in (6.96), corresponding

to the spinor equations in (6.104), we use formulas (6.102) for ρ, ui , Mi , and s,
then the resulting equations are, in general, third order differential equations in
components ψ and first order differential equations in components Fij .

In this sense equation (6.104) can be thought of as the integral of Eqs. (6.96),
which ρ, ui , Mi , and s expressed in terms of ψ and ψ+ via (6.102). The peculiar
feature of these integrals is that for them MiM

i = ρ2m2.
Due to the temperature equation ρT = ∂Λ0/∂s which are a corollary of (6.104),

the coefficients � and
∗
� in Eqs. (6.104) can be written as

� = − g

2mcρ2
Ω

(
ρ
∂Λ0

∂ρ
+ 1

2
MijFij

)
+ N

2mρ2
∂iM

i,

∗
� = − g

2mcρ2 N

(
ρ
∂Λ0

∂ρ
+ 1

2
MijFij

)
− Ω

2mρ2 ∂iM
i.

(6.120)

Direct verification shows that Eqs. (6.104), in which the coefficients � and
∗
�

are determined by equalities (6.120), while coefficients �i and
∗
�i by (6.105), are

connected by the identity

Re
{
ψ+γ 5[γ j ∂jψ + (

�I + i�j γ
j + ∗

�j
∗
γ j + ∗

�γ 5)ψ
]} ≡ 0

and therefore contain no more than seven independent real equations.

It is clear that if the coefficients � and
∗
� are determined by equalities (6.120), and

the coefficients �i and
∗
�i are determined by equalities (6.105), then the following

system of equations can be taken as a closed system

γ j ∂jψ +
(
�I + i�j γ

j + ∗
�j

∗
γ j + ∗

�γ 5
)
ψ = 0,

∂iFjk + ∂jFki + ∂kFij = 0, ∂j
(
F ij − 4πMij

) = 0,

ρT = ∂Λ0

∂s
. (6.121)
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The formulas for coefficients �, �i ,
∗
�i , and

∗
� in Eqs. (6.121) can be written in

the form

� = g

2mcρ

(
−Ω

∂Λ0

∂ρ
+ c

gρ
N∂iM

i

)
,

∗
� = g

2mcρ

(
−N

∂Λ0

∂ρ
− c

gρ
Ω∂iM

i

)
,

�i = g

2mcρ

{
ρGi − MijE

j + c

2
σij ε

jnks

[
∂Λ0

∂ωn
∂kus + ∂k

(
∂Λ0

∂ωn
us

)]}

+ 1

2mcρ
σij

(
c∂sM

js + Mjs d

dτ
us

)
+ ∂iγ,

∗
�i = g

2c

(
Bi − ∂Λ0

∂Mi

)
+ 1

2

∂η

∂s
∂is + 1

2
εijksu

j ∂kus. (6.122)

Here the components of the four-dimensional vector of electric strength Ej and
the components of the four-dimensional vector of magnetic induction Bi are defined
by equalities

Ej = umFjm, Bi = 1

2
εijksF

jkus.

Using the second identity in (6.69) and the identity

1

2
εjksiF

jkMs ≡ −MijE
j − 1

2
uiFjkM

jk,

it is easy to show that Eq. (6.104) with coefficients (6.105) and Eq. (6.121) with
coefficients (6.122) are equivalent.

Let us give now some interpretation of Eqs. (6.106). Consider functional δW∗
determined by relation (6.95) corresponding to Eqs. (6.96). Let us replace in
expression (6.95) of the functional δW∗ the variations δs by the local variations
∂s according to the formula δs = ∂s + δxi∂is (see (A.30)). As a result we get

δW∗ =
∫

V4

[− ρT ∂s + δxi
(− ρT ∂is − ∂j τi

j
)+ ∂j

(
τi

j δxi
)]
dV4. (6.123)

Taking into account equation (6.106) we transformed formula (6.123) for δW∗
to the form

δW∗ =
∫

V4

[−ρT ∂s+ρuj
(
∂jGi −∂iGj

)
δxi

]
dV4 +

∫

V4

∂j
(
τi

j δxi
)
dV4. (6.124)
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Using formulas (A.38) and (A.43) for variations of quantities ρ and ui , expres-
sion (6.124) for the functional δW∗ we write in the form

δW∗ =
∫

V4

(− ρT ∂s − Gi∂ρu
i
)
dV4 +

∫

Σ3

(
τi

j + ρujGi − δ
j
i ρu

mGm

)
δxinjdσ,

(6.125)

where nj are the components of a unit vector of the outward normal to the surface
Σ3, bounding the region V4. dσ is an invariant element of the three-dimensional
surface Σ3.

The purpose of the carried out transformation of the functional δW∗ consists
of replacement in the volume part of the functional δW∗ the variations δxi by the
local variations of the fluid density ∂ρ and local variations 0f the velocity vector
components ∂ui which can be expressed in terms of the variations of the functions
∂ψ and ∂ψ+. Such replacement is possible when conditions (6.106) are fulfilled.

Thus, performance of Eqs. (6.106) is a condition of the identity of the func-
tionals (6.95) and (6.125). The physical meaning of quantities Gi is defined by
expression (6.125) of the functional δW∗.

If quantities Gi that entering coefficients �i and satisfy Eqs. (6.106), are given as
functions of the determining parameters of the fluid and the field, then the system
of equations (6.104), (6.105) is complete. A definition of quantities Gi is related to
the concrete thermodynamic and mechanical formulation of the problem.

We now consider some simple cases connected with the concrete assignment of
the functions Gi , T , τij satisfying Eq. (6.106).

6.4.3 Adiabatic Processes

If the quantities Gi , T , τij are defined by the equalities

T = d

dτ
λ, Gi = −cλ∂is, τi

j = 0, (6.126)

where λ = λ(xi) is an arbitrary differentiable function, c is the light velocity in
vacuum, that Eq. (6.106) is carried out identically if

ds/dτ = 0. (6.127)

This case corresponds to adiabatic processes in an ideal magnetizable fluid. Note
that Eqs. (6.96) in the presence of Eqs. (6.126) and (6.127) are obtained by means
of the holonomic variational equation

δ

∫

V4

(
Λ + λρ

ds

dτ

)
dV4 = 0,
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where function Λ is considered as a Lagrange multiplier corresponding to
Eq. (6.127).

6.4.4 Isentropic Processes

Equations (6.106) are carried out identically, if to put

s = const, τi
j = 0, Gi = 0. (6.128)

This case corresponds to isentropic processes in an ideal magnetizable fluid.
Equations (6.96) in the presence conditions (6.128) are obtained by means of the
holonomic variational equation

δ

∫

V4

[
Λ − ρT (s − s0

]
dV4 = 0,

in which s0 = const and ρT is considered as an arbitrary varied function.

6.5 Non-steady Exact One-Dimensional Solutions for
Relativistic Models of Spin Fluids

Consider Eq. (6.96) for isentropic processes in the magnetizable spin fluid when the
equalities are carried out

s = s0 = const, τi
j = Gi = 0.

For function Λ0 in the Lagrangian (6.94) we accept

Λ0 = 2

g
Miω

i + Λm(ρ,M),

where Λm(ρ,M) is the given function, M is the module of the volume density
vector of the fluid magnetization M = (

MiM
i
)1/2 ≡ ρm. The components of

tensors Pi
j and

∗
F ij in Eqs. (6.96) are defined in the considered case by the equalities

Pi
j = 1

4π

[
FinH

jn − 1

4
δ
j
i FsmHsm − ujum

(
HinF

mn − HmnFin

)
]

+

+ (p + e)uiu
j + pδ

j
i − c

g

(
uk∂iM

jk + uj∂kMi
k
)
,

∗
F ij = σ s

i σ
n
j

(
Fsn − 1

M

∂Λm

∂M
Msn

)
− c

g

(
∂iuj − ∂jui

)
, (6.129)
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in which

p = ρ2 ∂Λm/ρ

∂ρ
+ M

∂Λm

∂M
− 1

2
BiM

i,

e = Λm − 1

2
BiM

i. (6.130)

Let us write out the system of equations (6.104) corresponding to Eq. (6.96) and
the isentropic condition

γ j

(
∂j + ig

2mc

∂Λm

∂ρ
uj

)
ψ + 1

2mρ2
∂jM

j (NI − Ωγ 5)ψ+

+ g

2c

[
− i

M
MsjE

jγ s +
(
Bj − 1

M

∂Λm

∂M
Mj

)
∗
γ j

]
ψ = 0,

∂j
(
F ij − 4πMij

) = 0, ∂iFjk + ∂jFki + ∂kFij = 0,

s = const. (6.131)

Note that the system of equations (6.131) is a quasilinear system of the first order
in ψ , whereas Eqs. (6.96), (6.129) corresponding to it are a nonlinear system of the
second order (relatively ψ).

By means of the first and second identity in (6.69) the spinor equations in (6.131)
can be written in a simpler form8

γ j ∂jψ − g

2mcρ

(
∂Λm

∂ρ
+ m

∂Λm

∂M

)
(
ΩI + Nγ 5)ψ

8If Λm depends only on the fluid density ρ, there is no electromagnetic field Ei = Bi = 0
and an additional equation ∂iM

i = 0 is fulfilled, then the spinor equations (6.132) for λ(ρ) =
− g

2mcρ

dΛm

dρ
coincide with Eqs. (6.70). Therefore, Eqs. (6.70) describe a spin fluid, defined by

the equations

∂j P̃i
j = 0, ∂iρu

i = 0, ∂iM
i = 0,

ρ
d

dτ

(
1

ρ
Mi

)
= gF̃ijM

j , F̃ij = ∗
F ij + c

g
εijksu

k∂sη,

P̃i
j = Pi

j + c

g

(
Msuiu

j − Miu
suj + Mjδsi

)
∂sη,

in which Pi
j and

∗
F ij are defined according to (6.129) (without terms with an electromagnetic

field). The quantity η in this case is considered as a Lagrange multiplier corresponding to the
equation ∂iM

i = 0; the additional terms in P̆i
j and F̆ij are related with the introduction into the

Lagrangian of the term cg−1Mi∂iη with the Lagrange multiplier η. These equations determine
hydrodynamic analogy of the theory of the elementary particles described by Eq. (6.70). In
particular, for the Heisenberg equation (λ = const) we have Λm = −λmcg−1ρ2 and for the
pressure p we obtain p = −λmcg−1ρ2. A condition of positivity of the pressure (or sound
velocity) for g < 0 gives λ > 0.
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+ 1

2mρ2 ∂jM
j (NI − Ωγ 5)ψ + g

2c

(
− i

M
MsjE

jγ s + Bj
∗
γ j

)
ψ = 0.

(6.132)

We establish further some exact solutions of the system of equations (6.131).
1. It is not difficult to verify that Eqs. (6.131) admit an exact solution

Ei = const, Bi = B

M

◦
Mi, (6.133)

ψ = ψ◦ exp

{
ig

2Mc

[(
BjM

j − ρ
∂Λm

∂ρ
− M

∂Λm

∂M

)

◦
◦
ui + ◦

MijE
j

]
xi

}
,

where ψ◦ is an arbitrary constant spinor field; B is an arbitrary constant; brackets
( )◦ mean that parameters ρ, Mi , being in brackets, are calculated for ψ = ψ◦;
◦
ui ,

◦
Mi are the components of the velocity vector and the magnetization vector

determined by the field ψ◦. Using formulas (6.102) we find ρ = ρ0, ui = ui
0,

Mi = Mi
0, and s = s0. Thus, solution (6.133) determines translatory motion

with the constant velocity of the uniformly magnetized spin fluid in a constant
electromagnetic field.

Determining the matrices γi by formulas (3.24) we take the spinor components
ψ◦ in solution (6.133) in the form

ψ1◦ = 0, ψ2◦ =
√

1

2
ρ◦ exp

[
i

2
η(s◦)

]
,

ψ3◦ = 0, ψ4◦ =
√

1

2
ρ◦ exp

[
− i

2
η(s◦)

]
, (6.134)

where ρ◦ and s◦ are arbitrary real constants. Then, according to formulas (6.102),
for the fields ρ, ui , Mi , s we get

ρ = ρ◦, u1 = u2 = u3 = 0, u4 = 1,

s = s◦, M1 = M2 = M4 = 0, M3 = ρ◦m.

Thus, if the matrices γi and the functions ψ◦ in solutions (6.133) are defined
by equalities (3.24) and (6.134), then solution (6.133) of Eqs. (6.131) determines a
solution of Eqs. (6.96) and (6.129), for which in the coordinate system xi the fluid
is at rest and uniformly magnetized along the axis x3.

2. Let us seek a solution of Eqs. (6.131), for which the vector of the electric
strength is equal to zero and the magnetic displacement vector is proportional to
magnetization vector of the fluid

Ei = 0, Bi = B

M
Mi. (6.135)
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The quantity B in (6.135) is considered as a required function of the variables xi . In
the presence of equalities (6.135) the spinor equations in (6.131) can be written in
the form

γ j

[
∂j + ig

2mc

(
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
uj

]
ψ

+ 1

2mρ2
∂jM

j (NI − Ωγ 5)ψ = 0. (6.136)

To transform the spinor equations in (6.131) to the form (6.136) we should use
identities (6.69).

We represent the function ψ in Eqs. (6.136) in the form

ψ = ψ◦ exp

[
− ig

2mc

∫ (
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
uj d xj

]
. (6.137)

The necessary and sufficient condition for the independence of the integral
in (6.137) from the path of integration in the space-time is written in the form

∂i

[(
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
uj

]
= ∂j

[(
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
ui

]
.

(6.138)

Replacing the functions ψ in terms of ψ◦ in Eqs. (6.136) by formula (6.137), we
get an equation for ψ◦

γ i∂iψ◦ + 1

2mρ2◦
∂jM

j◦
(
N◦I − Ω◦γ 5)ψ◦ = 0, (6.139)

Here the components ρ◦, Ω◦, N◦, and Mi◦ are expressed in terms of ψ◦ by the same
formulas, as ρ, Ω , N , Mi are expressed in terms of ψ .

Determining the matrices γi by formulas (3.24) we will seek one-dimensional
non-steady solution of (6.138) and (6.139) under the condition s = s◦ = const in
the form

ψ1◦ = 0, ψ2◦ = √
f2 exp iϕ2,

ψ3◦ = 0, ψ4◦ = √
f4 exp iϕ4, (6.140)
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where f2, f4, ϕ2, and ϕ4 depend only on the variables x3, x4. The tensor
fields ρ◦, ui◦, Mi◦, and s◦, corresponding to the spinor field ψ◦, determined by
equalities (6.140), have a special form

ρ2 = ρ2◦ = 4f2f4, u1◦ = u2◦ = 0, M1◦ = M2◦ = 0,

M3◦ = ρmu4◦ = m(f2 + f4), M4◦ = ρmu3◦ = m(f4 − f2),

η(s◦) = ϕ2 − ϕ4. (6.141)

If ui◦ and Mi◦ are determined according to (6.141) and equalities (6.135) are
carried out, then for components Fij of the electromagnetic field tensor we have

Fij = B
(
δ1
i δ

2
j − δ1

j δ
2
i

)
.

Bearing in mind equalities (6.140) and (6.141), the spinor equation (6.139) and
conditions (6.138) can be written in form of equations for the functions ϕ2, ϕ4,
f2, and f4:

(
∂3 + ∂4

)
ϕ4 = 0,

(
∂3 − ∂4

)
ϕ2 = 0,

∂3
(
f2 − f4

) = ∂4
(
f2 + f4

)
,

∂3

[
1

ρ

(
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
(
f2 + f4

)
]

= ∂4

[
1

ρ

(
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

) (
f2 − f4

)]
. (6.142)

The condition s = const in (6.131) passes in the equation

ϕ2 − ϕ4 = η(s◦) = const, (6.143)

while from the Maxwell equations in (6.131) it follows B = const.
Thus, for definition of the functions ϕ2, ϕ4, f2, and f4 we have a system of

equations (6.142) and (6.143).
From Eqs. (6.142) and (6.143) it follows a solution for ϕ2 and ϕ4:

ϕ4 = −1

2
η(s◦) + C1, ϕ2 = 1

2
η(s◦) + C1, (6.144)

where C1 is an arbitrary real constant.
Further we will seek solutions for which the functions f2 and f4 depend only on

the density ρ:

f2 = f2(ρ), f4 = f4(ρ).
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In this case the equations for the functions f2, f4 in (6.142) can be rewritten in the
form

d

dρ

[(
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
f2 + f4

ρ

]
∂3ρ

= d

dρ

[(
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
f2 − f4

ρ

]
∂4ρ,

d(f2 − f4)

dρ
∂3ρ − d(f2 + f4)

dρ
∂4ρ = 0. (6.145)

It is obvious that necessary and sufficient condition for the compatibility of
Eqs. (6.145) is the fulfillment of the equation

d(f2 − f4)

dρ

d

dρ

[(
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
f2 − f4

ρ

]

= d(f2 + f4)

dρ

d

dρ

[(
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
f2 + f4

ρ

]
, (6.146)

which can be transformed to the form

df2

dρ

df4

dρ
+ 1

4

(
a2

c2 − 1

)
= 0. (6.147)

Here the quantity a with the dimensions of velocity is defined by the equality

a =

⎛

⎜
⎜
⎝ρc2

∂2Λm

∂ρ2 + 2m
∂2Λm

∂ρ∂M
+ m2 ∂

2Λm

∂M2

∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

⎞

⎟
⎟
⎠

1
2

. (6.148)

Eliminating the function f4 from Eq. (6.147) with the aid of the equation ρ2 =
4f2f4 (see (6.141)), for the function f2 we get an ordinary differential equation

ρ

(
df2

dρ

)2

− 2f2
df2

dρ
− 1

ρ

(
a2

c2 − 1

)
f 2

2 = 0,

from which it follows

df2

dρ
= f2

ρ

(
1 ± a

c

)
. (6.149)
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The general solution of Eq. (6.149) has the form

f2 = 1

2
ρ exp

(
±
∫

a

c

dρ

ρ

)
. (6.150)

Here an arbitrary constant is included in the sign of the indefinite integral. For f4
we have

f4 = ρ2

4f2
= 1

2
ρ exp

(
∓
∫

a

c

dρ

ρ

)
. (6.151)

Thus, by virtue of equalities (6.137), (6.140), (6.144), (6.150), and (6.151) for
the considered exact solutions of Eqs. (6.131) the functions ψA have the form

ψ1 = 0, ψ3 = 0,

ψ4 =
√

1

2
ρ exp

1

2

[
∓
∫

a

c

dρ

ρ

− ig

mc

∫ (
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
ujdx

j − iη(s◦)
]
,

ψ2 =
√

1

2
ρ exp

1

2

[
±
∫

a

c

dρ

ρ

− ig

mc

∫ (
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
ujdx

j + iη(s◦)
]
,

(6.152)

Due to Eqs. (6.142), the integrals in formulas (6.152) do not depend on the path
of integration in the space-time.

To determine the density ρ(x3, x4) one can use Eqs. (6.145) in which due
to (6.146) there is only one independent equation

d(f2 − f4)

dρ
∂3ρ − d(f2 + f4)

dρ
∂4ρ = 0. (6.153)

Taking into account the found expressions (6.150) and (6.151) for the functions
f2, f4 and connection (6.141) of the components of the velocity vector ui = ui◦ with
the quantities f2, f4, Eq. (6.153) can be transformed to the following form

(
u4 ∓ a

c
u3
) ∂ρ

∂x4 +
(
u3 ∓ a

c
u4
) ∂ρ

∂x3 = 0. (6.154)
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From (6.154) it follows

x3 = x4
u3 ∓ a

c
u4

u4 ∓ a

c
u3

+ F(ρ), (6.155)

where F(ρ) is an arbitrary differentiable function of the fluid density ρ. For-
mula (6.155) determines an implicit dependence of the mass density ρ on the
variables x3 and x4.

Relations (6.152) and (6.155) and the equality

Fij = B
(
δ1
i δ

2
j − δ1

j δ
2
i

)
, B = const

completely determine a series of the exact solutions of Eqs. (6.131).
Solutions (6.152) and (6.155) of Eqs. (6.131) determine solutions of

Eqs. (6.96), (6.129) by formulas (6.102) in the form of Riemannian waves, for which
the components of the four-dimensional vectors of the velocity and magnetization
are defined as follows

u1 = u2 = 0, u3 = 1

ρm
M4 = sinh

(
∓
∫

a

c

dρ

ρ

)
,

M1 = M2 = 0, u4 = 1

ρm
M3 = cosh

(
∓
∫

a

c

dρ

ρ

)
.

The quantity a defined by formula (6.148) is the front velocity of the wave.
Expression (6.148) for a is possible to write also in the form

a =
[

c2

p + e

(
ρ
∂p

∂ρ
+ Mi

∂p

∂Mi

+ 1

2
MiB

i

)]1/2

, (6.156)

where the pressure p is the same, as in formula (6.130).
If B = 0 and Λm does not depend on the magnetizations, then expression (6.156)

passes into the well known formula[40] for the wave velocity in the relativistic
theory of the perfect compressible fluid.

Similarly (6.134)–(6.152) one can find that Eqs. (6.131) admit exact solutions of
the form

ψ2 = 0, ψ4 = 0, Fij = B
(
δ1
i δ

2
j − δ1

j δ
2
i

)
,

ψ3 =
√

1

2
ρ exp

1

2

[
±
∫

a

c

dρ

ρ

− ig

mc

∫ (
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
ujdx

j − iη(s◦)
]
,
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ψ1 =
√

1

2
ρ exp

1

2

[
∓
∫

a

c

dρ

ρ

− ig

mc

∫ (
∂Λm

∂ρ
+ m

∂Λm

∂M
− mB

)
ujdx

j + iη(s◦)
]
,

(6.157)

Here B is an arbitrary real constant. For solutions (6.157) we have

u1 = u2 = 0, u3 = − 1

ρm
M4 = sinh

(
∓
∫

a

c

dρ

ρ

)
,

M1 = M2 = 0, u4 = − 1

ρm
M3 = cosh

(
∓
∫

a

c

dρ

ρ

)
. (6.158)

Relations (6.158) also determine solutions of Eqs. (6.96) and (6.129) in the form
of Riemannian waves, for which dependence of density ρ on the variables x3 and
x4 is defined by Eq. (6.155).



Appendix A
Relativistic Models of Spin Fluids
in Electromagnetic Field

The description of various real phenomena and processes occurring in nature is
related to the need to introduce certain mathematical characteristics and math-
ematical models of these phenomena and processes. To solve a wide range of
theoretical and applied problems in field theory and in the mechanics of a continuous
medium, it is sufficient to use well-known and classical models—model of the
electromagnetic field, models of ideal compressible and incompressible liquids,
model of the Navier–Stokes viscous fluid, models of ideal elastic and plastic
media. However, there are experiences and conditions (strong electric and magnetic
fields, high temperatures and pressures, large gradients of deformations, etc.), in
which even usual physical systems show properties that cannot be described by
specified (and generally known) models. On the other hand, many new materials
have appeared in recent times, whose behavior can not be described on the basis
of known classical models and representations. In many processes, new effects and
new properties of materials are essential and determinative. This makes actual the
problem of creating mathematical models of continuous media with complicated
properties and characteristics.

Below we obtain equations describing the relativistic models of spin fluids
interacting with an electromagnetic field. One of the applications of the theory
presented in the book is obtaining of integrals and exact solutions of such equations
(see Chap. 6, Sect. 6.3). Note also that the relativistic models of the spin fluids
discussed below are of interest also because the spin fluids can be regarded as a
torsion source in the theory of gravitation.

The method used here to obtain dynamic equations for the spin fluids by means
of introduction into a Lagrangian the special arguments (related to the Ricci rotation
coefficients of the Cosserat continuum) makes it possible to describe the presence
in the fluid of an intrinsic angular momentum in the framework of a holonomic
variational equation.
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A.1 The Determining Parameters of the Spin Fluids
and Electromagnetic Field

A.1.1 Kinematic Characteristics of the Fluids

Let us introduce in the Minkowski space generally speaking an arbitrary curvilinear
coordinate system of an observer with the variables xi (i = 1, 2, 3, 4) and the
covariant vector basis Эi ; we also introduce a Lagrange coordinate system with
the variables ξ i and the covariant vector basis Э̂i . By definition of the Lagrangian
coordinate system, the coordinates ξ1, ξ2, ξ3 are constant for individual points of the
fluid, the coordinate ξ4 varies along the world line of the point. Any two Lagrangian
coordinate systems with the variables ξ i and ξ ′ i as coordinate systems for which the
coordinate line ξ4 coincide with the world line of the fluid point are connected by
the transformation

ξ ′4 = f (ξα, ξ4), ξ ′α = f α(ξβ), α, β = 1, 2, 3.

Let us assume that the motion law of individual points of the fluid is determined
by smooth functions

xi = xi(ξ1, ξ2, ξ3, ξ4). (A.1)

Function (A.1) for the constant variables ξ1, ξ2, ξ3 determine in the Minkowski
space the world line of an individual fluid point with the Lagrangian coordinates ξ1,
ξ2, ξ3.

We will denote the tensor components in the Lagrangian coordinate system by
the symbol ̂ . Recalculation of the tensor components given in the observer’s
coordinate system to the Lagrangian coordinate system is carried out by the usual
tensor formulas with the coefficients of transformation xi

p and ξp
i determined by

the equalities

xi
p = ∂xi

∂ξp
, ξp

j = ∂ξp

∂xj
.

It is obvious that the components xi
p and ξp

i satisfy the equations

xi
pξ

p
j = δij , xi

pξ
q
i = δ

q
p. (A.2)

The metric tensor g we define in the observer’s coordinate system by the
contravariant components gij and in a Lagrangian coordinate system by the
contravariant components ĝ pq :

g = gijЭiЭj = ĝ pqЭ̂pЭ̂q .



A.1 The Determining Parameters of the Spin Fluids 345

We have

gij = xi
px

j
q ĝ

pq, ĝ pq = ξp
iξ

q
jg

ij .

The covariant components of the metric tensor gij and ĝij are defined by the
matrices inverse to gij and ĝ ij

‖gij ‖ = ‖gij ‖−1, ‖ĝij‖ = ‖ĝ ij ‖−1

Along with the actual physical Minkowski space we will regard also the space of

initial states as the metric space defined on the manifold ξ i with the metric
◦
gij . The

tensor components in the space of initial states we will denote further by the symbol

“◦” . In many cases1 as the metric
◦
gij we can consider the metric of the actual space

at some value ξ4 = ξ4◦ :

◦
gij = ĝij (ξ

α, ξ4◦ ), ξ4◦ = const.

From the definition it follows ∂
◦
gij /ξ

4 = 0.
Let us define some main kinematic and dynamic characteristics of the spin fluid.
The contravariant components of the four-dimensional dimensionless velocity

vector of individual points of the fluid u = uiЭi in the observer’s coordinate system
are defined by the formula

ui = dxi

ds
= 1
√− ĝ44

xi
4. (A.3)

Here ds = √− ĝ44 dξ4 is an arch element of the world line of the individual
point of the fluid. Due to definition (A.3) we have

uiu
i = gij u

iuj = − (ĝ44)
−1 gij x

i
4x

j
4 = − (̂g44)

−1 ĝ44 = −1.

Thus,

uiu
i = −1. (A.4)

From definition (A.3) and Eqs. (A.2) it follows that the contravariant components
ûk and covariant components ûs of the four-dimensional velocity vector in the
Lagrange coordinate system have the form

ûk = ξk
iu

i = (−ĝ44)
−1/2 δk4 =

{
0, 0, 0,

1
√− ĝ44

}
,

ûs = ĝskû
k = ĝ4s (−ĝ44)

−1/2 =
{

ĝ14√− ĝ44
,

ĝ24√− ĝ44
,

ĝ34√− ĝ44
, −

√
− ĝ44

}
.

1In particular, for classical models of perfect fluids and ideal elastic bodies.
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The contravariant components of the four-dimensional vorticity vector ω = ωiЭi

in the observer’s coordinate system are defined by the relation

ωi = c

2
εijksuj∇kus, (A.5)

in which εijks are the components of the Levi-Civita pseudotensor, c is the
velocity light in vacuum; ∇k is the symbol of the covariant derivative calculated
in the observer’s coordinate system. From definition (A.5) it follows that the four-
dimensional vorticity vector and four-dimensional velocity vector are orthogonal
uiω

i = 0.

A.1.2 The Proper Basis of the Individual Points of Continuous
Medium

With the field of the four-dimensional velocity vector u(xi) we can relate some
generally non-holonomic system of orthonormal bases ĕa , whose fourth vector ĕ4
coincides with the four-dimensional velocity vector

ĕ4 = u = uiЭi , (A.6)

and the vectors ĕ1, ĕ2, and ĕ3, generally speaking, are arbitrary. Orthonormal bases
ĕa are called the proper bases for individual points of the fluid.

The components ŭa of the four-dimensional velocity vector u, calculated in
the proper basis ĕa , have the form ŭa = {0, 0, 0, 1}. Therefore three-dimensional
velocity of an individual point of the fluid, calculated in the proper basis, is equal to
zero. Thus, the individual point of the fluid is at rest relative to the proper basis.

The proper basis of the individual point of the fluid ĕa is determined up to an
arbitrary orthogonal transformation of the vectors ĕ1, ĕ2, and ĕ3.

We introduce the four-dimensional tensor ε̃ = εijkЭiЭjЭk by the contravariant
components εijk that are antisymmetric with respect to all indices i, j , and k:

εijk = εijksus, (A.7)

where εijks are the components of the four-dimensional Levi-Civita pseudotensor.
It is easy to see that in the proper basis ĕi the spatial components εαβλ (α, β,

λ = 1, 2, 3) define the three-dimensional Levi-Civita pseudotensor ε123 = 1, and
components εijk , when at least one of the indices i, j , k is equal 4, are equal to zero.
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Direct calculation taking into account definition (A.7) and relations in the
footnote on p. 130 shows that the following relations are valid

εijkε
smn =

∥
∥
∥∥
∥
∥
∥

σ s
i σm

i σn
i

σ s
j σm

j σn
j

σ s
k σm

k σn
k

∥
∥
∥∥
∥
∥
∥
,

εijkε
imn = σm

j σn
k − σn

j σ
m
k ,

εijkε
ijm = 2σm

k , εijkε
ijk = 6,

where σ
j
i = δ

j
i +uiu

j . Due to (A.4) the tensor components σj
i satisfy the equations

ujσ
j

i = 0, uiσ
j

i = 0, σ
j

i σ
s
j = σ s

i .

The use of the components of the four-dimensional tensors σj
i and εijk simplifies

and makes more obvious the tensor transformations related to the spacelike vectors
and tensors. By means of the tensor ε̃ definition (A.5) for the components of the
four-dimensional vorticity vector is written in the form

ωi = c

2
εijk∇j uk.

A.1.3 The Mass Density of the Fluid

We introduce the mass density of the fluid ρ by the formula

ρ = ρ◦
√

◦
σ/σ̂ ,

◦
σ = mod det ‖ ◦

σαβ‖,
σ̂ = mod det ‖σ̂αβ‖, (A.8)

in which the invariant ρ◦ is given and depends only on the variables ξ1, ξ2, ξ3 of

the Lagrangian coordinate system. The components of tensors σ̂αβ ,
◦
σαβ are defined

by the relations

σ̂αβ = ĝαβ + ûαûβ,
◦
σαβ = ◦

gαβ + ◦
uα

◦
uβ.

It is easy to show that the mass density of the fluid determined by formula (A.8),
identically satisfies the continuity equation

∇iρu
i = 0.

A direct check shows that the components of the velocity vector ui and the
mass density ρ for the fixed individual fluid points with coordinates ξ1, ξ2, ξ3 do
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not depend on the choice of the Lagrangian coordinate ξ4 or, more precisely, are
invariant under transformations

ξ ′4 = f (ξα, ξ4), ξ ′α = ξα,

where f is an arbitrary differentiable function. From definition (A.8) it follows also
that the fluid density ρ is invariant under the group of the general transformations
of the variables xi (i.e., ρ is the four-dimensional scalar).

A.1.4 The Microstructure of a Fluid

It is said that a microstructure of a fluid is given if at each point of a fluid there is
defined a four-dimensional orthonormal basis (tetrad) ea connected with the basis
vectors Эi of the observer’s coordinate system by the scale factors hi

a , hi
a :

ea = hi
aei, Эi = hi

aea.

The four-dimensional rotation of the tetrad ea in the transition from a point with
coordinates xk to a point with coordinates xk +dxk are defined by the Ricci rotation
coefficients

dea = dxkΔk,abe
b,

which are expressed in terms of the scale factors hj
a by the relation

Δk,ab = 1

2
gij

(
hi

b∇′
kh

j
a − hi

a∇′
kh

j
b

)
.

Here the symbol of the covariant derivative ∇′
k acts only upon the indices relating to

the coordinate system xi . Along with the Ricci rotation coefficients Δk,ab we will
use also coefficients

Δk,ij = hi
ahj

bΔk,ab = 1

2
gab

(
hi

a∇′
khj

b − hj
b∇′

khi
a
)
. (A.9)

It is obvious that when the individual point of the fluid moves along the world
line and the increment of the coordinates of the point is determined by the relation
dxi = uids = cuidτ , the relative rotation of the vectors ea can be determined by
the formula

dea = Ωabe
bdτ, Ωab = cukΔk,ab.
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The components

Ωij = hi
ahj

bΩab = cukΔk,ij = 1

2
gab

(
hi

a d

dτ
hj

b − hj
b d

dτ
hi

a

)
, (A.10)

where d/dτ = cui∇′
i is the symbol of the derivative with respect to the proper time,

in the general case can be represented in the form

Ωij = −uiaj + ujai + εijkΩ
k. (A.11)

The components of the four-dimensional vectors ai and Ωs by definition satisfy the
equations

uiai = 0, usΩ
s = 0 (A.12)

and are expressed in terms of Ωij by the equalities2

Ωs = 1

2
εsijΩij , ai = −ujΩij . (A.13)

In connection with physical applications, the vector Ω = ΩiЭi defined in the
observer’s coordinate system by the components Ωi , calculated by equality (A.13),
is called the four-dimensional vector of the internal rotation of the fluid.

Consider the case when the system of tetrads ea is such that on the world line of
the individual point of the fluid the tetrads ea are connected by the Fermi-Walker
transport. In this case by the definition of the Fermi–Walker transport the scale
factors hi

a satisfy the equation (see (2.82))

d

dτ
hi

a = hj
a

(
ui

d

dτ
uj − uj d

dτ
ui

)

and direct calculation by formula (A.10) shows that the tensor components Ωij for
such system of tetrads are represented in the form

Ωij = −ui
d

dτ
uj + uj

d

dτ
ui.

Thus, if the tetrads ea , defining the fluid microstructure, are transported along
the world line of the point according to Fermi–Walker, then the components of the
vector of internal rotation Ω are equal to zero Ωs = 0, and the components ai in
formula (A.11) define the four-dimensional acceleration vector

ai = d

dτ
ui .

2Relations (A.11)–(A.13) are valid for the components of any antisymmetric tensor of the second
rank Ωij .
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Let us calculate the Ricci rotation coefficients Δ̆k,ij for the system of tetrads ĕa ,
which are the proper bases for the individual points of the fluid. We denote the scale
factors connecting bases Эi and ĕa by the symbol h̆i

a , i.e., ĕa = h̆i
aЭi .

By definition of the proper basis (A.6) we have

h̆i
4 = ui. (A.14)

Contracting equality (A.9) written for the proper bases ĕa , with the velocity
vector components ui = h̆i

4, we find

uj Δ̆k,ij = h̆j
4Δ̆k,ij = −∇′

kh̆i4 = −∇kui.

Thus, in the presence of equality (A.14) the Ricci rotation coefficients Δ̆k,ij

satisfy the equality uj Δ̆k,ij = −∇kui . Therefore the Ricci rotation coefficients
Δ̆k,ij , corresponding to the proper bases, can be represented in the form

Δ̆k,ij = −ui∇kuj + uj∇kui + εijsΔ̆k
s, (A.15)

where the quantities Δ̆k
s by definition satisfy the equation

usΔ̆k
s = 0. (A.16)

For the quantities Ω̆ij = cukΔ̆k,ij by virtue of definition (A.15) we have

Ω̆ij = −ui
d

dτ
uj + uj

d

dτ
ui + εijsΩ̆

s.

Here Ω̆s = cukΔ̆k
s . From Eq. (A.16) it follows usΩ̆

s = 0.

A.1.5 The Intrinsic Angular Momentum of the Fluid

The intrinsic angular momentum of the fluid in special relativity can be described
by the second rank tensor K, defined in an observer’s coordinate system with the
vector basis Эi by antisymmetric components Kij = −Kji , and in the proper basis
ĕa by components K̆ab = −K̆ba . Thus,

K = KijЭiЭj = K̆abĕa ĕb.

According to the definition, the spatial part of the components K̆ab of tensor K ,
calculated in the proper basis, defines the usual three-dimensional axial vector
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of the volume density of the intrinsic angular momentum of the fluid, while the
components K̆4a are equal to zero

K̆ab =

∥
∥
∥
∥
∥∥
∥
∥

0 K̆3 −K̆2 0
−K̆3 0 K̆1 0
K̆2 −K̆1 0 0
0 0 0 0

∥
∥
∥
∥
∥∥
∥
∥

. (A.17)

In the observer’s coordinate system all six components Kij in the general case
are nonzero, but due to the fact that in the proper basis the components K̆ab have the
special form (A.17), the components Kij are connected by the equation ujK

ij = 0,
which in the proper basis can be written in the form K̆α4 = 0, α = 1, 2,3.

Instead of the volume density tensor of the intrinsic angular momentum K =
KijЭiЭj can use also the four-dimensional volume density vector of the intrinsic
angular momentum KKK = KiЭi , defined in the observer’s coordinate system by the
components

Ki = 1

2
εijkKjk. (A.18)

Due to definition (A.18) the components Ki of the vector of the intrinsic angular
momentum satisfy the invariant equation uiK

i = 0.
Due to definition (A.18) the four-dimensional vector KKK = KiЭi = K̆a ĕa

is defined by three spatial components K̆α in the proper basis, while the fourth
component K̆4 in the proper basis is equal to zero K̆a = (K̆1, K̆2, K̆3, 0).

Contracting equality (A.18) with components εijk with respect to the index i,
we find expression for the components of the volume density tensor of the intrinsic
angular momentum in terms of the vector components Ki in observer’s coordinate
system Kij = εijsKs .

A.1.6 Electromagnetic Parameters

The main characteristic of the magnetization and dielectric polarization of a fluid
in an electromagnetic field is the volume density antisymmetric tensor of the
magnetization and the dielectric polarization

MijЭiЭj = M̆abĕa ĕb.
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By definition, in the proper basis the components of the volume density tensor of
the magnetization and the dielectric polarization of the fluid are determined by the
antisymmetric matrix

M̆ab =

∥
∥
∥
∥
∥∥
∥
∥

0 M̆3 −M̆2 P̆ 1

−M̆3 0 M̆1 P̆ 2

M̆2 −M̆1 0 P̆ 3

−P̆ 1 −P̆ 2 −P̆ 3 0

∥
∥
∥
∥
∥∥
∥
∥

, (A.19)

where M̆α are the components of the three-dimensional volume density vector of
the fluid magnetization in the proper basis, P̆ α are the components of the three-
dimensional volume density vector of the fluid polarization in the proper basis.

For the description of the magnetization and dielectric polarization of the fluid
instead of the antisymmetric tensor with components Mij it is possible and in some
cases is convenient to use the four-dimensional vector of the volume density of
the magnetization M = MiЭi = M̆a ĕa and the four-dimensional vector of the
volume density of the dielectric polarization of the fluid P = P iЭi = P̆ a ĕa , whose
components Mi and P i in the observer’s coordinate system are defined in terms of
the tensor components Mij

Mi = 1

2
εijkMjk, P i = −ujM

ij , (A.20)

where uj are the covariant components of the velocity vector of the individual fluid
points. Unlike the tensor components Mij , the components of four-dimensional
vectors Mi and P i are not arbitrary, and satisfy the invariant algebraic equations

uiM
i = 0, uiP

i = 0, (A.21)

From Eqs. (A.21) it follows that the components M̆4 and P̆ 4 calculated in the
proper basis are equal to zero M̆4 = P̆ 4 = 0, and the components M̆α and P̆ α

(α = 1, 2, 3) coincide with components of the three-dimensional magnetization and
dielectric polarization vectors

M̆i = (
M̆1, M̆2, M̆3, 0

)
, P̆ i = (

P̆ 1, P̆ 2, P̆ 3, 0
)
,

which determine matrix (A.19).
The tensor components Mij in the observer’s coordinate system are expressed in

terms of the components of the four-dimensional vectors of the magnetization and
dielectric polarization

Mij = −uiP j + ujP i + εijkMk. (A.22)

The electromagnetic field in the fluid is described by the electromagnetic
field tensor F = F ijЭiЭj , defined in the observer’s coordinate system by the
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components F ij , antisymmetric with respect to the indices i, j . The covariant
components Fij of the electromagnetic field tensor can be determined by means
of the vector potential Ai :

Fij = ∇iAj − ∇jAi ≡ ∂iAj − ∂jAi,

The component A4 is related to the potential ϕ of the electric field, A4 = −ϕ.
In each inertial Cartesian coordinate system the matrix of the components Fij

can be represented in the form

Fij =

∥
∥∥
∥
∥
∥
∥∥

0 B3 −B2 E1

−B3 0 B1 E2

B2 −B1 0 E3

−E1 −E2 −E3 0

∥
∥∥
∥
∥
∥
∥∥

,

where Eα are the components of the three-dimensional vector of the electric
strength, Bα are the components of the three-dimensional vector of the magnetic
induction. If the electromagnetic field is considered in a medium, then one can
define also the four-dimensional vector B = BiЭi of the magnetic induction and
the four-dimensional vector E = EiЭi of the electric strength by the components
Bi and Ei :

Bi = 1

2
εijkFjk, Ei = ujF

ij . (A.23)

It is obvious that the components of the vectors Ei and Bi , determined by
relations (A.23), satisfy the equations

uiB
i = 0, uiE

i = 0,

and, in the observer’s coordinate system

Fij = uiEj − ujEi + εijkB
k. (A.24)

To describe the electromagnetic field in the fluid, we also introduce the electro-
magnetic induction tensor HHH = HijЭiЭj , whose components are defined by

Hij = F ij − 4πMij . (A.25)
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In an inertial Cartesian coordinate system the matrix of the tensor components
Hij are represented in the form

Hij =

∥
∥
∥
∥
∥∥
∥
∥

0 H 3 −H 2 −D1

−H 3 0 H 1 −D2

H 2 −H 1 0 −D3

D1 D2 D3 0

∥
∥
∥
∥
∥∥
∥
∥

,

where Dα are the components of the three-dimensional electric displacement vector,
Hα are the components of the three-dimensional magnetic strength vector.

The four-dimensional electric displacement vector D = DiЭi and the four-
dimensional strength vector of the magnetic field H = HiЭi in the observer’s
coordinate system are defined by the components Di and Hi :

Di = ujH
ij , H i = 1

2
εijkHjk. (A.26)

From Eqs. (A.20), (A.23), (A.25), and (A.26) it follows

Di = Ei + 4πP i, H i = Bi − 4πMi.

It is easy to see that due to definitions (A.26) the components Di and Hi satisfy
the invariant equations

uiD
i = 0, uiH

i = 0.

It is obvious that in the proper basis the components D̆4 and H̆ 4 of the vectors
D = DiЭi = D̆a ĕa and H = HiЭi = H̆ a ĕa are equal to zero

D̆a = (
D̆1, D̆2, D̆3, 0

)
, H̆ a = (

H̆ 1, H̆ 2, H̆ 3, 0
)
.

Let us give also expression of the components Hij in terms of the components
Di , Hi in the observer’s coordinate system

Hij = uiDj − ujDi + εijkHk. (A.27)

A.2 Variations of the Determining Parameters

We denote by the symbol μ′(xi) the value of an arbitrary function μ(xi) in the
varied state. Assuming that μ′ differs little from μ, the variation of the function
μ(xi) we determine by the equality, considered up to the small quantities of the first
order

∂μ = μ′(xi) − μ(xi). (A.28)
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From definition (A.28) it follows

∂
∂

∂xi
μ = ∂

∂xi
μ′ − ∂

∂xi
μ = ∂

∂xi
∂μ.

Therefore and for the covariant derivatives of the components of tensors or
spinors is carried out the equality3

∂∇iμ = ∇i∂μ. (A.29)

For the components μ of tensors and spinors along with the variation ∂μ we
define also the variation δμ:

δμ = ∂μ + δxi∇iμ. (A.30)

Here δxi are the variations of the law of the fluid motion which are the components
of a four-dimensional vector

δxi = x ′ i(ξ j ) − xi(ξj ).

It is obvious that if μ are the components of tensors (or spinors), then variations
∂μ and δμ determine the tensors (or spinors) the same rank, as μ.

Using definition (A.30) of the variation δ, for the variation of the derivatives
xi

j = ∂xi/∂ξj , ∇iμ one can find

δxi
j = ∂δxi/∂ξj = xs

j∇sδx
i,

δ∇jμ = ∇j δμ − ∇j δx
i∇iμ. (A.31)

Let us now calculate the variation of the vector components Âi , given in the
Lagrange coordinate system

δÂi = δ
(
xs

iAs

) = xs
iδAs + Asδx

s
i = xs

i

(
δAs + Aj∇sδx

j
)
.

The variation

δLAs = δAs + Aj∇sδx
j (A.32)

is called the absolute variation (or the Lie variation) of the covariant components of
the vector As . Thus, we have

δÂi = xs
iδLAs. (A.33)

3This equality is carried out in the special relativity under the assumption that the metric of the
space-time does not vary.
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Similarly, for the variation of the contravariant components Âi one can find

δÂi = ξ i
sδLA

s, (A.34)

where δLA
s is the absolute variation of the contravariant components As :

δLA
s = δAs − Aj∇j δx

s. (A.35)

In the general case the absolute variation of the tensor components μA (A is a
generalized index) is defined by the relation

δLμ
A = δμA − F

Aj

Bi
μB∇j δx

i, (A.36)

in which components F
Aj

Bi
μB the same, as in the definition of the covariant

derivative

∇kμ
A = ∂kμ

A + F
Aj

Bi
μBΓ i

jk.

By definition, for the components
◦
gij of the metric tensor and the components

◦
ui

of the velocity vector in the space of the initial states, we have

δ
◦
gij = 0, δ

◦
ui = 0. (A.37)

Let us establish now formulas for the variation of the velocity vector and the
fluid density. Using definition (A.3), we find an expression for the variation of the
contravariant components of the four-dimensional velocity vector

δuj = δ
xj

4√− ĝ44
= (− ĝ44

)−1/2
δxj

4 + (− ĝ44
)−3/2

gpqx
j

4x
p

4δx
q

4.

Replacing here the variations δxq
4 by formula (A.31), we obtain

δuj = σ
j
i u

s∇sδx
i. (A.38)

In the same way it is possible to find formulas for the variation of the velocity
vector components given in the Lagrangian coordinate system

δûi = ûiuju
s∇sδx

j ,

δûi = xp
i(σpqu

s + δspuq

)∇sδx
q (A.39)
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and for the variation of the metric tensor components calculated in the Lagrangian
coordinate system

δĝij = xp
ix

q
j

(
δspgmq + δsqgmp

)∇sδx
m. (A.40)

Denote ĝ = det ‖ĝij‖. Then

δ
√

− ĝ = − 1

2
√− ĝ

δĝ = 1

2

√
− ĝ ĝ ij δĝij .

Taking into account formula (A.40) we obtain

δ
√

− ĝ =
√

− ĝ ∇iδx
i . (A.41)

Using the obtained formulas for the variations δûi and δĝij , we find

δσ̂ij = xs
ix

m
j

(
σnsσ

k
m + σnmσk

s

)∇kδx
n. (A.42)

For mass density ρ, according to (A.8) and (A.37), we have

δρ = −1

2
ρĝ ij δσ̂ij .

Replacing here the variations δσ̂ij by formula (A.42), we finally obtain

δρ = −ρσ
j

i ∇j δx
i. (A.43)

The variation of the Ricci rotation coefficients Δk,ij , which determine the
microstructure of the fluid, is obtained by varying equality (A.9)

δΔk,ij = ∇kδϕij − Δk,i
nδϕjn + Δk,j

nδϕin − Δs,ij∇kδx
s, (A.44)

where the antisymmetric quantities δϕij are defined by the formula

δϕij = 1

2

(
hiaδhj

a − hjaδhi
a
)
. (A.45)

In the sequel the absolute variation will be also used

δLϕij = δϕij + 1

2

(
gsi∇j δx

s − gjs∇iδx
s
)
, (A.46)

This formula is obtained if we replace δhj
a in (A.45) by the absolute variation

δLhj
a = δhj

a + hs
a∇j δx

s.
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Let us also give an expression for the variation of quantities Ωij defined by
relations (A.10):

δΩij = d

dτ
δϕij − Ωi

nδϕjn + Ωj
nδϕin + Ωiju

mus∇mδxs, (A.47)

which is obtained by contracting relation (A.44) with components cuk.
The invariant element dV4 of the four-dimensional region of the Minkowski

space is determined by

dV4 = √−g dx1dx2dx3dx4 =
√

− ĝ dξ1dξ2dξ3dξ4

Bearing in mind (A.41), we get

δdV4 = dξ1dξ2dξ3dξ4δ
√

− ĝ = ∇i δx
idV4. (A.48)

A.3 The Variational Equation

To obtain the dynamic equations and the state equations, describing spin fluids and
the electromagnetic field, we will use the following variational equation [63]

δ

∫

V4

ΛdV4 + δW∗ = 0. (A.49)

Here V4 is an arbitrary four-dimensional region of the Minkowski space; dV4
is the invariant element of the volume V4; Λ is the Lagrange function for the
fluid and field which is the four-dimensional scalar; δW∗ is a given functional
introduced to account for external influences and irreversible processes in the fluid.
In Eq. (A.49), the determining parameters of the fluid and the field whose function
is the Lagrangian Λ, and the region V4 are varied. The variations of the determining
parameters in Eq. (A.49) are assumed to be equal to zero on the three-dimensional
surface Σ3 bounding the region V4.

We will consider models of the magnetizable and polarizable fluids with the
intrinsic angular momentum, described by the Lagrangian4

Λ = 1

8π
F ij

(
∇iAj − ∇jAi − 1

2
Fij

)
− Mij∇iAj + ηuiMi + λuiPi

+ Λm

(
ρ, s, ωi ,Ωi,Mi, Pi, g

ij
)
. (A.50)

4The more general models of the magnetizable and polarizable media have been considered in
[96].
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Here Fij are the components of the electromagnetic field tensor; Ai are the
components of the vector potential of the electromagnetic field; Mi are the com-
ponents of the four-dimensional volume density vector of the fluid magnetization,
Pi are the components of the four-dimensional volume density vector of the
dielectric polarization of the fluid. Mij are the components of the volume density
antisymmetric tensor of the magnetization and dielectric polarization of the fluid
related to the components of the four-dimensional vectors Mi and Pi by Eq. (A.22).
ui are the components of the four-dimensional dimensionless velocity vector of
individual points of the fluid; ωi are the components of the four-dimensional
vorticity vector; Ωi are the components of the four-dimensional vector of the
internal rotation; ρ is the mass density of the fluid; s is the specific density of
entropy. Coefficients λ and η in the Lagrangian (A.50) are the Lagrange multipliers.

In the Lagrangian (A.50) the term −Mij∇iAj determines an interaction of the
magnetized and polarized fluid with the electromagnetic field. The quantity

Λf = 1

8π
F ij

(
∇iAj − ∇jAi − 1

2
Fij

)

is the Lagrangian of the electromagnetic field. The terms with Lagrange multipliers
λ and η ensure the fulfillment of Eqs. (A.21). Λm is the Lagrangian of the matter,
defined as a scalar function of the arguments noted in (A.50).

The functional δW∗, entering the variational equation (A.49), in general case is
defined by the equality

δW∗ =
∫

V4

(
− ρT δs + τi

j∇j δx
i − Qiδx

i − 1

c
ij δLAj

+ �iδLPi + LiδLMi − 1

2
Rij δLϕij

)
dV4. (A.51)

Here T is the quantity playing the temperature role in equilibrium processes.
ij are the components of the conduction current vector, c is the light velocity in
vacuum. The absolute variation δL is determined by equalities (A.32) and (A.46).
The use of the quantities �i and Li in the functional δW∗ is related to consideration
of irreversible processes of magnetization and polarization in the fluid. Qi are
the components of the external volume forces vector. By definition, the vectors
determined by the components �i , Li , Qi , and ij , are spacelike:

uiQ
i = 0, ui�

i = 0, uiL
i = 0, uii

i = 0.

The tensor components Rij in functional (A.51) defining the relaxation spin
processes, we determine by the equality

Rij = εijkRk, usRs = 0. (A.52)
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The tensor components τi
j in functional (A.51) determine a viscosity and

thermal conduction in the fluid. The components of an arbitrary tensor of the second
rank τi

j can always be represented in the form

τi
j = si

j − 1

c
uiq

j − cGiu
j + τuiu

j , (A.53)

where c is the light velocity, and the components sij , qj , and Gi by definition satisfy
the equations

uisi
j = 0, uj si

j = 0,

ujq
j = 0, uiGi = 0, (A.54)

Using (A.54) it is easy to find an expression τ , qj , Gi , and si
j in terms of τij :

si
j = σm

i σ
j
n τm

n, qj = cσ
j
n u

iτi
n,

Gi = 1

c
σm
i uj τm

j , τ = uiuj τi
j .

Let us assume further that the contravariant components of the tensor τmj =
gmiτi

j in δW∗ are symmetric τmj = τ jm and satisfy the invariant equation
uiuj τ

ij = 0 which means that the component τ 44, calculated in the proper basis, is
equal to zero. In this case formula (A.53) for τi j can be written in the form

τi
j = si

j − 1

c

(
uiq

j + uj qi
)
,

where the contravariant components of the viscous stress tensor sij are symmetric
sij = sji .

The quantities τij , �i , Li , Rij , and ij entering in functional δW∗, must be given
as functions of the determining parameters of the fluid and field or to be defined
from the specified equations.

A.4 Dynamic Equations for Spin Fluids

Using formulas for variations of the determining parameters (A.29)–(A.48), it is
possible to calculate the variation of the action integral. We have

δ

∫

V4

ΛdV4 =
∫

V4

δΛdV4 +
∫

V4

ΛδdV4 =
∫

V4

(
δΛ + Λ∇i δx

i
)
dV4. (A.55)
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Let us give expressions for the variations of the separate terms entering into the
action integral. For the variation of the action integral for the electromagnetic field
we have

1

8π
δ

∫

V4

F ij

(
∇iAj − ∇jAi − 1

2
Fij

)
dV4 =

∫

V4

{
1

8π
δF ij

(∇iAj − ∇jAi

−Fij

)+ 1

4π
∇jF

ij δLAi + δxi

[
1

4π
∇j

(
FjsFis − 1

4
FsmF smδ

j

i

)]}
dV4

−
∫

Σ3

[
1

4π
F ij δLAi + 1

4π

(
FjsFis − 1

4
FsmF smδ

j
i

)
δxi

]
nj dσ. (A.56)

Here nj are the components of a unit vector of the outward normal to the
three-dimensional surface Σ3, bounding the four-dimensional region V4. dσ is the
invariant element of the surface Σ3.

The variation of the part of the action integral with the terms −Mij∇iAj hase
the form

δ

∫

V4

(− Mij∇iAj

)
dV4 =

∫

V4

{
− ∇jM

ij δLAi (A.57)

+δxi∇j

[
− MjsFis + 1

2
MsmF smδ

j
i + ujum

(
FmnMin − FinM

mn
)
]

+uiF
ij δPj + 1

2
εksijFksuiδMj

}
dV4 −

∫

Σ3

{
− Mij δLAi

+
[

− MjsFis + 1

2
MsmF smδ

j

i + ujum

(
FmnMin − FinM

mn
)
]
δxi

}
nj dσ.

To simplify the writing, the equation Fij = ∇iAj − ∇jAi is used under the
transformation of terms in the surface part of expressions (A.56) and (A.57), which
does not affect the form of the Euler equations obtained below.

The variation of the action integral with the Lagrange multipliers are written as
follows

δ

∫

V4

(
ηuiPi + λuiMi

)
dV4 =

∫

V4

{
uiPiδη + uiMiδλ + ηuiδPi + λuiδMi

−δxi∇j

[
σ

j
i

(
ηusPs + λusMs

)+ uj
(
ηPi + λMi

)]}
dV4

+
∫

Σ3

[
σ

j
i

(
ηusPs + λusMs

)+ uj
(
ηPi + λMi

)]
δxinj dσ. (A.58)
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From the variational equation (A.49), taking into account formulas for varia-
tions (A.29)–(A.48), expressions (A.55)–(A.58) for the variation of separate parts
of the action integral and definition (A.51) for the functional δW∗, we find the
following system of differential Euler’s equations5

a. ∇jH
ij = 4π

c
ii,

b. Fij = ∇iAj − ∇jAi,

c. ∇jPi
j = Qi,

d. ρ
d

dτ

(
1

ρ
Kij

)
= Ki

nΩ
nj − Kj

nΩ
ni + Rij ,

e. Ei = σ i
s

∂Λm

∂Ps

+ �i, Bi = σ i
s

∂Λm

∂Ms

+ Li,

f. ρT = ∂Λm

∂s
,

g. uiMi = 0, uiPi = 0,

h. λ = ui

∂Λm

∂Mi
, η = ui

∂Λm

∂Pi
. (A.59)

Here σ
j
i = δ

j
i + uiu

j ; the components of the tensors Kij and Pi
j in Eqs. (A.59)

are defined by the relations

Kij = εijksu
k ∂Λm

∂Ωs

, (A.60)

Pi
j = 1

4π

[
FinH

jn − 1

4
δ
j
i FsmHsm − ujum

(
HinF

mn − HmnFin

)
]

+(p + e)uiu
j + pδ

j
i + 1

2
ujSis

d

dτ
us + 1

2
cuj∇kSi

k − 1

2
cSjs∇ius

+ujKisukΩ
ks + 1

2

(
Ri

j + LiM
j − LjMi + �iP

j − �jPi

)− ∗
si

j

+1

c

(
uiq

j + uj qi
)− ujuk

(
Mi

∂Λm

∂Mk

+ Pi
∂Λm

∂Pk

+ ωi
∂Λm

∂ωk

+ Ωi
∂Λm

∂Ωk

)
,

5The equations for fluids with an intrinsic angular momentum considered here have been obtained
in [77]. Analogous equations were obtained in [43] in the case when the four-dimensional vector
of the electric field is equal to zero, for a special type of internal energy and using non-holonomic
terms in the variational equation to describe the intrinsic angular momentum. The simplest
relativistic model of a fluid with the intrinsic angular momentum (dust) have been obtained in
[71]. See also [19, 33].
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where the quantities p, e,
∗
si

j , and Sij are defined as follows

p = ρ2 ∂Λm/ρ

∂ρ
+ 1

4
FijM

ij ,

e = Λm − 1

4
FijM

ij − ωi
∂Λm

∂ωi

− Ωi
∂Λm

∂Ωi

,

Sij = εijksu
k ∂Λm

∂ωs
,

∗
si

j = si
j + 1

2

(
LiM

j + LjMi + �iP
j + �jPi

)
. (A.61)

To the system of dynamic equations (A.59) it is necessary to add the continuity
equation

∇iρu
i = 0.

which is satisfied by virtue of the definition of the fluid density.
The equations “a” in (A.59) are the second pair of Maxwell’s equations for

electromagnetic fields. The vector potential of the electromagnetic field Ai enters
into the equations system (A.59) only in the equation Fij = ∇iAj−∇jAi . Therefore
the components Ai can be excluded from Eqs. (A.59) by omitting the equations
Fij = ∇iAj − ∇jAi , but adding the first pair of Maxwell’s equations to the system
of equations (A.59)

∇iFjk + ∇jFki + ∇kFij = 0,

which are carried out identically due to the equations Fij = ∇iAj − ∇jAi .
The equation “c” in (A.59) is the equation for the energy-momentum of the field

and fluid.
The equation “d” in (A.59) obtained due to the variations δϕij , is the equation for

the tensor of the intrinsic angular momentum. Contracting the equation “d” in (A.59)
with components εskij u

k with respect to the indices i and j , we get the equation

ρ
d

dτ

1

ρ
Ki = Kj

(
−εijkΩ

k + ui
d

dτ
uj − uj

d

dτ
ui

)
+ Ri

for the vector components of the spin Ki , determined by the relation

Ki = 1

2
εijsKjs = −σ i

j

∂Λm

∂Ωj

.
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The contraction of the equation “d” in (A.59) with the velocity vector components
uj gives

Kij d

dτ
uj = KisΩksu

k. (A.62)

By means of Eq. (A.62) it is possible to exclude the term with Ωks in expres-
sion (A.60) for the components of the energy-momentum tensor Pi

j . Taking into
account also that the scalar Lagrangian Λ satisfies the identity6

uk

(
Mi

∂Λm

∂Mk

+ Pi
∂Λm

∂Pk

+ ωi
∂Λm

∂ωk

+ Ωi
∂Λm

∂Ωk

)
≡ 0, (A.63)

the expression (A.60) for Pi
j can be written as follows

Pi
j = 1

4π

[
FinH

jn − 1

4
δ
j
i FsmHsm − ujum

(
HinF

mn − HmnFin

)
]

+ pδ
j
i

+(p + e)uiu
j + 1

2
ujSis

d

dτ
us + 1

2
cuj∇kSi

k − 1

2
cSjs∇ius + ujKis

d

dτ
us

+1

2

(
Ri

j + LiM
j − LjMi + �iP

j − �jPi

)− ∗
si

j + 1

c

(
uiq

j + ujqi
)
.

A.5 The Energy-Momentum Tensor of the Electromagnetic
Field in Continuous Media

Let P ij be the contravariant components of the total energy-momentum tensor of
the fluid and the electromagnetic field, satisfying the equations

∇jP
ij = Qi,

∇k

(
riP jk − rjP ik + Sijk

) = riQj − rjQi, (A.64)

in which ri are the components of the radius vector of a point in the Minkowski
space, Sijk are the components of the intrinsic angular momentum tensor.

In general case, the components of the energy-momentum tensor P ij is possible
to represent in the form

P ij = −pij + 1

c
uiεj + cujgi + (ρc2 + ρU)uiuj , (A.65)

6Identity (A.63) is obtained by equating to zero variation of the action integral under an arbitrary
transformation of the variables xi of the observer’s coordinate systems.
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where the four-dimensional scalar ρU , the components of the four-dimensional
vectors εj , gi and the components of the four-dimensional second rank tensor pij

are defined in terms of P ij by the equalities

ρU = −ρc2 + uiujP
ij , pij = −σ i

kσ
j
s P

ks ,

εj = −cuiσ
j
s P

is , gi = −1

c
σ i
s ujP

sj . (A.66)

Due to definitions (A.66) the components εj , gi , and pij satisfy the equations

ujp
ij = 0, uip

ij = 0, uig
i = 0, uj ε

j = 0. (A.67)

It is easy to see that in the proper basis the components ε̆ 4 and ğ 4 are equal to
zero; the components p̆ ij in the proper basis are defined by the three-dimensional
spatial matrix

ε̆ j = (
ε̆ 1, ε̆ 2, ε̆ 3, 0

)
, ğ i = (

ğ 1, ğ 2, ğ 3, 0
)
,

p̆ ij =
∥
∥
∥∥
p̆ αβ 0

0 0

∥
∥
∥∥ , α, β = 1, 2, 3.

From equalities (A.65) and (A.67) it follows that the matrix of the contravariant
components of the energy-momentum tensor in the proper basis has the form

P̆ ij =

∥
∥
∥∥
∥
∥
∥
∥

−p̆ 11 −p̆ 12 −p̆ 13 cğ 1

−p̆ 21 −p̆ 22 −p̆ 23 cğ 2

−p̆ 31 −p̆ 32 −p̆ 33 cğ 3

c−1ε̆ 1 c−1ε̆ 2 c−1ε̆ 3 ρc2 + ρU

∥
∥
∥∥
∥
∥
∥
∥

.

According to definition of the energy-momentum tensor, the scalar quantity ρU

entering in (A.65), is the volume density of the energy of the fluid and electromag-
netic field in the proper basis; the four-dimensional vector with components εj is the
volume density vector of the energy flux of the fluid and field; the four-dimensional
vector with components gi is the volume density vector of the momentum of the
fluid and field; pij are the components of the four-dimensional stress tensor.

In the general case, the components P ij of the total energy-momentum tensor
of the fluid and the field can be written as the sum of the energy-momentum tensor
components P

ij

(m) of the fluid and the energy-momentum tensor components P
ij

(f )

of the electromagnetic field; the components Sijk of the total tensor of the intrinsic
angular momentum for the fluid and field can be represented as the sum of the
tensors components of the intrinsic angular momentum of the fluid S

ijk

(m) and field

S
ijk

(f ):

P ij = P
ij

(m) + P
ij

(f ), Sijk = S
ijk

(m) + S
ijk

(f ). (A.68)
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Taking into account formula (A.68), Eqs. (A.64) for the energy-momentum and
intrinsic angular momentum can be written in the form

∇jP
ij

(m)
= F i + Qi,

∇k

(
riP

jk

(m) − rjP ik
(m) + S

ijk

(m)

) = hij + ri(F j + Qj) − rj (F i + Qi),

where the components F i of the four-dimensional force vector and the components
hij of the four-dimensional internal torque tensor acting on the fluid, are defined by
the relations

F i = −∇jP
ij

(f ), hij = P
ij

(f ) − P
ji

(f ) − ∇kS
ijk

(f ).

Similarly (A.65), the energy-momentum tensor components P
ij

(m) and P
ij

(f ) we
represent in the form

P
ij

(m) = −p
ij

(m) + 1

c
uiε

j

(m) + cujg i
(m) + (ρc2 + ρU(m))u

iuj ,

P
ij

(f ) = −p
ij

(f ) + 1

c
uiε

j

(f ) + cujg i
(f ) + U(f )u

iuj . (A.69)

The quantities ρU(m), U(f ), ε
j

(m), ε
j

(f ), gi
(m), gi

(f ), p
ij

(m), and p
ij

(f ) in formu-
las (A.69) are determined by the equalities

ρU(m) = −ρc2 + uiujP
ij

(m),

p
ij

(m) = −σ i
kσ

j
s P

ks
(m),

ε
j

(m) = −cuiσ
j
s P

is
(m),

g i
(m) = −1

c
σ i
s ujP

sj

(m),

U(f ) = uiujP
ij

(f ),

p
ij

(f ) = −σ i
kσ

j
s P

ks
(f ),

ε
j

(f ) = −cuiσ
j
s P

is
(f ),

g i
(f ) = −1

c
σ i
s ujP

sj

(f ).

(A.70)

Comparing Eqs. (A.65) and (A.69) and taking into account equalities (A.68), we
find

ρU = ρU(m) + U(f ),

εj = ε
j

(m) + ε
j

(f ),

pij = p
ij

(m) + p
ij

(f ),

gi = g i
(m) + g i

(f ).

In the macroscopic phenomenological theory of the electromagnetic field it is
assumed that the electromagnetic field has no an intrinsic angular momentum

S
ijk

(f ) = 0. (A.71)
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As for the energy-momentum tensor of the electromagnetic field in the medium,
several different definitions have been proposed for P ij

(f ). The Minkowski definition
and the Abraham definition are most known and spread (see e.g., [26–28, 64]).
Expression (A.60) received above for the total energy-momentum tensor of the fluid
and electromagnetic field shows that under the assumption S

ijk

(f ) = 0 as the energy-
momentum tensor of the electromagnetic field in the medium one can take the tensor
defined in an observer’s coordinate system by the components [78]7

P
ij

(f ) = 1

4π

[
F i

nH
jn − 1

4
gij FsmHsm − ujum

(
Hi

nF
mn − HmnF i

n

)]
.

(A.72)

Substituting the components of the tensors F ij and Hij by formulas (A.24)
and (A.27) in (A.72), we obtain the expression for the components P

ij

(f ) in terms of

the components of the four-dimensional vectors Ei , Di , Hi , and Bi of the electric
and magnetic strength and induction

P
ij

(f )
= 1

4π

[(
1

2
gij + uiuj

)
(
EmDm + BmHm

)

− EiDj − HiBj + (
uiεjms + ujεims

)
EmHs

]
. (A.73)

The components εims in (A.73) are defined by equality (A.7).
Let us consider some simple properties of the tensor determined by compo-

nents (A.72). It is easy to see that due to definition (A.72) the components P
ij

(f )

identically satisfy the invariant equations

Pi
i
(f ) = 0, uj

(
P

ij

(f ) − P
ji

(f )

) = 0.

The volume density of the electromagnetic energy U(f ), in accordance with
definitions (A.70) and (A.72), is defined by the equality

U(f ) = 1

8π

(
EiD

i + HiB
i
) = 1

16π

(
FijH

ij + 4uju
mF ijHim

)
. (A.74)

7The components of this energy-momentum tensor in the pseudoeuclidean space with the metric
signature (−,−,−,+) are defined as follows

P
ij

(f )
= − 1

4π

[
F i

nH
jn − 1

4
gijFsmHsm + ujum

(
Hi

nF
mn − HmnF i

n

)]
.
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It is obvious that the energy U(f ), determined by formula (A.74), is the four-
dimensional scalar. In the proper basis of the individual fluid point the quantity U(f )

is written in the form

U(f ) = 1

8π

(
Ĕ · D̆ + B̆ · H̆

)
,

where Ĕ, H̆ are the three-dimensional vectors of the electric and magnetic strength;
D̆ and B̆ are the three-dimensional vectors of the dielectric and magnetic induction
in the proper basis.

The four-dimensional vector of the volume density of the energy flux of the
electromagnetic field, corresponding to the energy-momentum tensor with compo-
nents (A.72), is defined in the observer’s coordinate system by the components

ε
j

(f ) = − c

4π
σjsuiF

imHsm = c

4π
εjmsEmHs.

In the proper basis ε̆ 4
(f ) = 0, and the components ε̆ 1

(f ), ε̆
2
(f ), and ε̆ 3

(f ) define the
three-dimensional Poynting vector of the energy flux density of the electromagnetic
field

ε̆
j

(f ) =
(
ε̆ 1
(f ), ε̆ 2

(f ), ε̆ 3
(f ), 0

)
=
{ c

4π
Ĕ × H̆ , 0

}
.

The four-dimensional vector of volume density of the electromagnetic field
momentum, corresponding to the tensor with components (A.72), is related to the
vector of the energy flux volume density by the multiplier c−2:

g
j

(f ) = 1

c2 ε
j

(f ).

Thus, in the proper basis ğ 4
(f ) = 0, while the components ğ 1

(f ), ğ 2
(f ), ğ 3

(f )

determine the three-dimensional vector of the volume density of the electromagnetic
field momentum, proportional to the three-dimensional vector of the energy flux
volume density of the electromagnetic field

ğ
j

(f )
= (

ğ 1
(f ), ğ 2

(f ), ğ 3
(f ), 0

)
=
{

1

4π
Ĕ × H̆ , 0

}
.

The four-dimensional stress tensor of the electromagnetic field is determined by
the components p

ij

(f ):

p
ij

(f ) = − 1

4π
σ i
kσ

j
s

(
Fn

sHnk − 1

4
gskFqmHqm

)

= 1

4π

[
EiDj + HiBj − 1

2
σ ij

(
EmDm + HmBm

)
]
.
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In the proper basis p̆α4
(f ) = p̆4α

(f ) = 0, while the spatial components p̆
αβ

(f )

determine the Maxwell stress tensor of the electromagnetic field

p̆
αβ

(f ) = 1

4π

[
ĔαD̆β + H̆ αB̆β − 1

2
δαβ

(
ĔλD̆

λ + H̆λB̆
λ
)
]
.

Using Maxwell’s equations, the expression for the components F i of the vector
of the ponderomotive force acting on the fluid from the electromagnetic field, one
can transform to the form

F i = −∇jP
ij

(f ) = 1

c
ijF

ij + 1

16π

(
Fjs∇iH js − Hjs∇iFjs

)

+ ρ

4πc

d

dτ

[
1

ρ
um
(
HinFmn − HmnF

in
)
]
.

In the non-relativistic approximation the expression for the spatial components
Fα of the force vector has the form

Fα = 1

c
εαβλi

βBλ + 1

8π

(− Eλ∂αD
λ + Dλ∂αEλ − Hλ∂αB

λ + Bλ∂αHλ

)

+ ρ

4πc
εαβλ

d

dt

[
1

ρ

(
DβBλ − EβHλ

)]
,

where the components of the three-dimensional vectors Bλ, Hλ, Eλ, and Dλ are
determined in an inertial Cartesian observer’s coordinate system; εαβλ are the
components of the three-dimensional pseudotensor Levi-Civita.

The tensor of the ponderomotive torque corresponding to the energy-momentum
tensor with components (A.72), in the observer’s coordinate system is defined by
the components h

ij

(f ):

h
ij

(f )
= P

ij

(f )
− P

ji

(f )
= 1

4π
σ i
s σ

j
m

(
Fn

sHnm − Fn
mHns

)

= 1

4π

(− EiDj + EjDi − HiBj + HjBi
)
. (A.75)
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The components h̆
ij

(f )
in the proper basis are defined by the three-dimensional

spatial matrix

h̆
ij

(f ) =

∥
∥∥
∥
∥
∥
∥∥

0 M3 −M2 0
−M3 0 M1 0
M2 −M1 0 0

0 0 0 0

∥
∥∥
∥
∥
∥
∥∥

,

where Mα are the components of the three-dimensional ponderomotive torque
which is well corresponding to the known experimental data

MMM = {Mα
} = 1

4π
(B̆ × H̆ + D̆ × Ĕ).

From definition (A.75) it follows

ujh
ij

(f ) = 0.

In conclusion we note that from the second equation in (A.64), which taking into
account (A.71) can be written in the form

Pji − P ij + ∇kS
ijk = P

ji

(m) − P
ij

(m) + ∇kS
ijk

(m) − hij = 0,

it follows that under condition (A.71) if a medium is described by a model without
intrinsic moments, Sijk

(m) = 0, and if the energy-momentum tensor components of the
medium are symmetric, then by virtue of the equations describing the considered
model, the ponderomotive torque tensor is equal to zero

hij = P
ji

(f ) − P
ij

(f ) = 0.

In the application to the models of the fluids considered above, at S
ijk

(m) = 0,

when the fluid has no intrinsic angular momenta, the components P
ij

(f ), defined by
equality (A.72), become symmetric by virtue of the dynamic equations (A.59) and
in this case coincide with the components of the Abraham tensor, if the function Λm

in the Lagrangian is defined in such a way that the corresponding energy-momentum
tensor of the fluid is symmetric. Thus, for the indicated classes of models, the use
of the Abraham tensor corresponds to neglecting the intrinsic angular momentum of
the medium.

It is known that in real media the magnetization is related to the intrinsic angular
momentum of the medium. Therefore, in such media the physically determined
energy-momentum tensor of the field, generally speaking, must be asymmetric.
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A.5.1 The Minkowski Tensor

The energy-momentum tensor of the electromagnetic field by Minkowski in an
observer’s coordinate system is defined by the components

Sij = 1

4π

(
F i

nH
jn − 1

4
gijFsmHsm

)
.

The components Sij are not symmetric at all Sij �= Sji .
The energy, four-dimensional vector of the energy flux, and four-dimensional

stress tensor of the electromagnetic field, determined by the Minkowski tensor, are
the same as those determined by the tensor with components P ij

(f ) (see (A.72)):

U(M) = U(f ), ε
j

(M) = ε
j

(f ), p
ij

(M) = p
ij

(f ).

The four-dimensional vector of the volume density of the electromagnetic field
momentum in a medium, corresponding to the Minkowski energy-momentum
tensor, is defined by the components

g i
(M) = −1

c
σ i
qujS

qj = 1

4πc
εiksDkBs.

In the proper basis, this vector has the components

ğ i
(M) = (

ğ 1
(M), ğ 2

(M), ğ 3
(M), 0

)
=
{

1

4π
D̆ × B̆, 0

}
,

where D̆ and B̆ are the three-dimensional vectors of electric and magnetic induction
of the field in the proper basis. For the components of the ponderomotive force
vector, calculated by the Minkowski tensor, in virtue of Maxwell’s equations, we
have

F i = −∇j S
ij = 1

c
ijF

ij + 1

16π

(
Fjs∇iH js − Hjs∇iFjs

)
.

The tensor of the ponderomotive torque corresponding to the Minkowski energy-
momentum tensor, is defined in the observer’s coordinate system by the components
h
ij

(M) = Sij − Sji . In the proper basis the components h̆
ij

(M) are determined by the
matrix

h̆
ij

(M) =

∥∥
∥
∥
∥
∥
∥∥

0 M3 −M2 −L1

−M3 0 M1 −L2

M2 −M1 0 −L3

L1 L2 L3 0

∥∥
∥
∥
∥
∥
∥∥

.
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Here

MMM = {Mα
} = 1

4π
(B̆ × H̆ + D̆ × Ĕ),

LLL = {Lα
} = 1

4π
(D̆ × B̆ − Ĕ × H̆ ),

Ĕ, H̆ are the three-dimensional vectors of the electric and magnetic strength in the
proper basis.

A.5.2 The Abraham Tensor

The Abraham energy-momentum tensor of the electromagnetic field in a medium
is the symmetric part of the tensor with components (A.72). Thus, in an observer’s
coordinate system the components Aij of the Abraham tensor are defined by the
equality

Aij = 1

2

(
P

ij

(f ) + P
ji

(f )

)
.

The energy, four-dimensional vector of the momentum and four-dimensional
vector of the energy flux of the electromagnetic field, determined by the Abraham
tensor, are the same as those determined by the tensor with components P ij

(f ):

U(A) = U(f ), ε
j

(A) = ε
j

(f ), g i
(A) = g i

(f ).

The stress tensor components of the electromagnetic field corresponding to
the Abraham tensor, are the symmetric part of the stress tensor components
corresponding to the energy-momentum tensor with components (A.72):

p
ij

(A)
= 1

2

(
p
ij

(f )
+ p

ij

(f )

)
= 1

8π

[
EiDj + EjDi + HiBj + HjBi

− σ ij
(
EmDm + HmBm

)]
.

From the symmetry properties of the Abraham tensor it follows that the tensor of
the ponderomotive torque, determined by the Abraham tensor, is equal to zero

h
ij

(A) = Aij − Aji = 0.
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It is easy to see that if the medium does not have a magnetization and a dielectric
polarization Mi = P i = 0, then the components of the Minkowski tensor, the
components of the Abraham tensor, and the components (A.72) coincide

P
ij

(f ) = Sij = Aij = 1

4π

(
Fn

iF nj − 1

4
gijFsmF sm

)
.

The components of the tensors P
ij

(f ) and Aij identically coincide also in the case

when the equations connecting Ei , Di and Hi , Bi have the form Di = εEi , Bi =
μHi .

A.6 Equations of the Heat Influx and Entropy Balance

The equation of heat influx in the observer’s coordinate system is obtained by
contracting of the energy-momentum equation with the velocity vector components

ui∇j

(
P

ij

(m) + P
ij

(f )

) = 0. (A.76)

Using definitions (A.69) and (A.72) for the components of the energy-
momentum tensors P

ij

(m) and P
ij

(f ), the equation of the heat influx (A.76) by
identical transformations (using the continuity equation for the fluid density ρ)
can be represented in the form

ρ
d

dτ

[
U(m) + 1

8πρ

(
EjD

j + BjH
j
)
]

= −∇j

(
ε
j

(m) + c

4π
εjksEkHs

)
− c

(
gi
(m) + 1

4πc
εiksEkHs

)
d

dτ
ui

+ c

[
p
ij

(m) − 1

8π
σ ij

(
EkD

k + BkH
k
)+ 1

4π

(
EiDj + HiBj

)
]
djui . (A.77)

The quantities U(m), ε
j

(m), g
i
(m), and p

ij

(m) in the equation of the heat influx (A.77)

are defined by equalities (A.70), and di = σ
j
i ∂j . Using the Maxwell and continuity

equations, Eq. (A.77) can be written also in the form

ρ
d

dτ
U(m) = −∇j ε

j

(m) − cgi
(m)

d

dτ
ui + cp

ij

(m)djui + q, (A.78)
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where the energy influx q from the electromagnetic field to the fluid is defined by
the equality

q = cui∇jP
ij

(f ) = iiujFij + 1

16π

(
Hij d

dτ
Fij − Fij

d

dτ
H ij

)

+ 1

4π
um
(
HinFmn − HmnF

in
) d

dτ
ui . (A.79)

Expression (A.79) for the energy influx q by means of the components of the
four-dimensional vectors of electric and magnetic strength and induction one can
rewrite in a more symmetrical form

q = ijE
j + 1

8π

(
Ei

d

dτ
Di − Di d

dτ
Ei + Hi

d

dτ
Bi − Bi d

dτ
Hi

)
.

In particular, if Ei , Di , Hi , and Bi are connected by the classical relations Di =
εEi, Bi = μHi , then for q we get

q = ijE
j + 1

8π

(
EiE

i dε

dτ
+ HiH

i dμ

dτ

)
. (A.80)

From Eq. (A.80) it follows that if the magnetic permeability μ and dielectric
permittivity ε do not depend on the proper time τ , then the heat influx q is defined
only by the Joule heat q = ijEj .

A calculation of the energy influx of the electromagnetic field to the medium by
the Minkowski tensor gives

q(M) = cui∇j S
ij = iiujFij + 1

16π

(
Hij d

dτ
Fij − Fij

d

dτ
H ij

)

≡ ijE
j + 1

8π

(
Ei

d

dτ
Di − Di d

dτ
Ei + Hi

d

dτ
Bi − Bi d

dτ
Hi

)

+ 1

8π
εiks

(
EkHs − DkBs

) d

dτ
ui .

If Di = εEi , Bi = μHi , then for q(M) the following expression is obtained

q(M) = ijE
j + 1

8π

(
EiE

i dε

dτ
+ HiH

i dμ

dτ

)
+ 1 − εμ

8π
εiksE

kH s d

dτ
ui .

Thus, the energy influx of the electromagnetic field to the medium q(M)

corresponding to the Minkowski energy-momentum tensor, depends on acceleration
of the medium. The physical sense of the last member with acceleration dui/dτ
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in expression for the heat influx q(M), calculated by the Minkowski tensor, is
represented problematic.

A calculation of the electromagnetic energy influx by the Abraham tensor gives

q(A) = ijEj + 1

8π

(
Ei

d

dτ
Di − Di d

dτ
Ei + Hi

d

dτ
Bi − Bi d

dτ
Hi

)

+ 1

8π

(
EiDj − EjDi + HiBj − HjBi

)
ωij ,

where ωij are the components of the four-dimensional vorticity tensor. If Ei , Di ,
Hi , Bi are connected by the relations Di = εEi, Bi = μHi , then the expression
for q(A) coincides with expression (A.80) for heat influx corresponding to the
tensor (A.72).

Differentiating the function U(m) in the equation of the heat influx (A.78) and
performing transformations taking into account definitions (A.70) of the quantities
ε
j

(m), g
i
(m), p

ij

(m) and the Euler equations (A.59), Eq. (A.78) can be transformed to
the form

ρT
ds

dτ
= −cui∇j

[
∗
sij − 1

2
Rij − 1

c

(
uiqj + uj qi

)
]

− 1

2
RijΩij + ijEj

+ Li

(
d

dτ
Mi + εijkM

jωk

)
+ �i

(
d

dτ
Pi + εijkP

jωk

)
, (A.81)

where Ωij = cukΔk,ij , the components of the viscous stress tensor
∗
sij are

determined by equality (A.61).
Equation (A.81) in some cases can be considered as the entropy balance equation.
A transformation of Eq. (A.78) to the form (A.81) is quite cumbersome, therefore

we give simpler derivation of Eq. (A.81) directly from the variational equation.
Let us consider the variational equation (A.49), assuming that the variations of the
independent parameters are defined as follows

δxi = uiδη, ∂ϕij = 0, ∂s = 0,

∂Ai = 0, ∂Pi = 0, ∂Mi = 0.

Here δη is an arbitrary function (variation). In this case from the formulas for
variations (A.38) and (A.43) it follows

∂ρ = 0, ∂ui = 0.
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For the functional δW∗, determined by equality (A.51), for the considered special
class of the variations we find

δW∗ =
∫

δη

{
− 1

c
ρT

ds

dτ
+ 1

c
ijusFjs + 1

c
Li

(
d

dτ
Mi + εijkM

jωk

)

+1

c
�i

(
d

dτ
Pi + εijkP

jωk

)
− 1

2c
RijΩij − ui∇j

[
τ ij + 1

2

(
LiMj + LjMi

+�iP j + �jP i − Rij
)
]}

dV4 +
∫

ui

(
τ ij − 1

2
Rij − ijAi

)
δηnj dσ. (A.82)

Also for the variation of the action integral we have

δ

∫
ΛdV4 =

∫ [
∂Λ + ∇i

(
Λδxi

)]
dV4 =

∫
∇i

(
Λuiδη

)
dV4. (A.83)

Taking into account the expressions (A.82) and (A.83) for the functional δW∗
and the variation of the action integral, it is easy to verify that from the variational
equation (A.49) with the variation δη, equal to zero on the surface Σ3 of the region
V4, it follows the entropy balance equation (A.81).

Using Eqs. (A.52) and (A.54), the equation of entropy balance (A.81) one can
write also in the form

ρT
ds

dτ
= ijEj − ∇iq

i − 1

c
qi d

dτ
ui + c

∗
sij∇jui − Ri

(
Ωi − ωi

)

+ Li

(
d

dτ
Mi + εijkM

jωk

)
+ �i

(
d

dτ
Pi + εijkP

jωk

)
.



Appendix B
Proper Bases and Invariant Internal
Energy in the Theory of Electromagnetic
Field

B.1 Definition of the Proper Basis of the Electromagnetic
Field

Let us consider in the Minkowski pseudoeuclidean space, referred to a Cartesian
coordinate system of the observer with the vector basis Эi , a free electromagnetic
field, described by antisymmetric components of the tensor F ij = −Fji , satisfying
the Maxwell equations

∂jF
ij = 0, ∂j

∗
F ij = 0,

where
∗
F ij = 1

2ε
ijmsFms are the components of the dual tensor of the electromag-

netic field.
The energy-momentum tensor of the free electromagnetic field is defined by the

components

Pi
j = 1

4π

(
FinF

jn − 1

4
δ
j
i FsmF sm

)
≡ 1

8π

(
FinF

jn + ∗
F in

∗
Fjn

)
, (B.1)

which by virtue of the Maxwell equations satisfy the conservation law

∂jPi
j = 0.

In the general case the tensor of the electromagnetic field has two independent
invariants J1 and J2:

J1 = 1

2
Fij F

ij , J2 = 1

2
Fij

∗
F ij . (B.2)
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From definition (B.1) it follows that the trace of the energy-momentum tensor
of the electromagnetic field is equal to zero, and the square of the matrix ‖Pi

j‖ is
proportional to the unit matrix [53, 72]

Pi
i = 0, Pi

jPj
m = U2δmi .

Here the quantity U is expressed in terms of the invariants J1 and J2 of the
electromagnetic field tensor

U = 1

8π

√
J 2

1 + J 2
2 = 1

16π

√
(
FijF ij

)2 + (
Fij

∗
F ij

)2
. (B.3)

Let us consider the eigenvalue problem of the matrix of the components of the
energy-momentum tensor Pi

jai = λaj . If at least one invariant J1 or J2 of the
electromagnetic field tensor is not equal to zero J 2

1 +J 2
2 �= 0, then four orthonormal

eigenvectors exist with componentsπi, ξ i , σ i , ui , satisfying the equations

Pi
jπi = Uπj , Pi

jσ i = −Uσj ,

Pi
j ξ i = Uξj , Pi

jui = −Uuj , (B.4)

in which the eigenvalue U is defined by the relation (B.3).
The solution of Eqs. (B.4) for the eigenvectors can be written down in the

parametrical form. In order to write down such solution, we introduce a four-
component spinor field ψ (playing the role of the parametrization), so that the
components of the electromagnetic field tensor Fjs are expressed in terms of ψ

by the relationship of the form

Fjs = i

2
ψ+ (γjγs − γsγj

)
ψ. (B.5)

Then Eqs. (B.4) have the following solution for πi , ξ i , σ i , ui :

ρπi = Im(ψT Eγ iψ),

ρξ i = Re(ψT Eγ iψ),

ρσ i = ψ+γ iγ 5ψ,

ρui = iψ+γ iψ,

ρ exp iη = ψ+ψ + iψ+γ 5ψ. (B.6)

while the eigenvalue U is related to the invariant ρ of the spinor field ψ:

U = 1

8π
ρ2.
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The vectors with components πi , ξ i , σ i , ui represent the proper basis of the
spinor ψ .

Indeed, if relations (B.5), (B.6) are carried out, then it follows from identity (m)
in (3.60) that the components of the energy-momentum tensor (B.1) can be written
in the form8

Pi
j = U

[
δ
j
i + 2

(
uiu

j − σiσ
j
)]

. (B.7)

In the proper basis we have

P̆a
b =

∥
∥
∥
∥∥
∥
∥
∥

U 0 0 0
0 U 0 0
0 0 −U 0
0 0 0 −U

∥
∥
∥
∥∥
∥
∥
∥

.

The contraction of equality (B.7) with components of the vectors πi , ξ i , σ i , ui gives
Eq. (B.4).

Consider a two-parametrical spinor field

ψ ′ = exp
i

2

(
αγ 5 + ϕI

)
ψ ≡ e

i
2 ϕ

(
I cosh

α

2
+ iγ 5 sinh

α

2

)
ψ, (B.8)

where I is the unit four-dimensional matrix; α, ϕ are arbitrary real parameters.
It is easy to show that the components of the electromagnetic field tensor Fjs ,
determined by the equality (B.5), do not change under the transformation (B.5)
ψ → ψ ′, while the components of the proper vectors (B.6) are transformed as
follows9

π ′
i = πi cosϕ + ξi sinϕ, σ ′

i = σi coshα − ui sinhα,

ξ ′
i = −πi sin ϕ + ξi cosϕ, u′

i = −σi sinhα + ui coshα. (B.9)

Equations (B.9) determine the orthogonal transformation in the plane of the
vectors πiЭi , ξ iЭi through an angle ϕ and hyperbolic rotation in the plane of
the vectors σ iЭi , uiЭi through an angle α. The eigenvalue U that is a the four-
dimensional invariant evidently does not change under transformations (B.8), (B.9).

The orthonormal basis ĕa = {πiЭi , ξ
iЭi , σ

iЭi , u
iЭi}, defined by Eqs. (B.4),

we shall call the proper basis of the electromagnetic field. The proper basis ĕa
introduced here is defined by the electromagnetic field up to transformation (B.9).

8In Chap. 3 the components of tensor (B.5) are denoted by the symbol Mjs . The left part of the
equation (m) in (3.60) represents the quantity 4πP is .
9Transformation (B.8) is the particular case of the gauge transformation (3.163).
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The tensor components Fjs are expressed in an arbitrary coordinate system of
the observer in terms of the vector components of the proper basis (see Eq. (3.139))

Fjs = Ω
(
πj ξs − πsξj

)+ N
(
σjus − σsuj

)
, (B.10)

where Ω = ψ+ψ , N = ψ+γ 5ψ . The invariants Ω and N are connected with the
invariants J1, J2 by the relations

Ω2 = 1

2

(
J1 +

√
J 2

1 + J 2
2

)
, N2 = 1

2

(− J1 +
√
J 2

1 + J 2
2

)
, (B.11)

or

J1 = Ω2 − N2, J2 = 2ΩN. (B.12)

It is seen from (3.140) that the components of the electromagnetic field tensor
F̆ ab in the proper basis (B.6) are defined by the matrix

F̆ ab =

∥∥
∥
∥
∥
∥∥
∥

0 Ω 0 0
−Ω 0 0 0

0 0 0 N

0 0 −N 0

∥∥
∥
∥
∥
∥∥
∥

. (B.13)

Directly from definition (B.10) and due to the orthonormality conditions of the
components πi , ξ i , σ i , ui it follows that the vectors with components ui + σ i ,
ui − σ i , ξ i + iπi , ξ i − iπi are the eigenvectors of the electromagnetic field tensor
with eigenvalues, respectively, −N , N , −iΩ , iΩ :

Fjs

(
us + σ s

) = −N
(
uj + σj

)
,

Fjs

(
us − σ s

) = N
(
uj − σj

)
,

Fjs

(
ξs + iπs

) = −iΩ
(
ξj + iπj

)
,

Fjs

(
ξs − iπs

) = iΩ
(
ξj − iπj

)
. (B.14)

The eigenvalues Ω and N are expressed in terms of the electromagnetic field
tensor by equalities (B.11), (B.2).

B.2 The Invariant Definition of the Electromagnetic Energy

If Pi
j are the energy-momentum tensor components of certain physical system, then

by definition the quantity ε = −P4
4 is the volume density of energy of the physical

system under consideration. It is obvious that the quantity P4
4 depends essentially



B.2 Invariant Definition of Electromagnetic Energy 381

on the choice of the coordinate system in which the components Pi
j are calculated.

In accordance with definition (B.1) we have for energy ε of the electromagnetic field

ε = −P4
4 = 1

8π

(
EαE

α + BαB
α
)
, (B.15)

where Eα are the components of the three-dimensional electric strength vector, Bα

are the components of the three-dimensional magnetic induction vector, calculated
in the observer’s coordinate system. Components Eα and Bα define the matrix of
the components of the electromagnetic field tensor

Fij =

∥
∥∥
∥
∥
∥
∥
∥

0 B3 −B2 E1

−B3 0 B1 E2

B2 −B1 0 E3

−E1 −E2 −E3 0

∥
∥∥
∥
∥
∥
∥
∥

.

Together with the energy ε the concept of internal energy U that is a four-
dimensional scalar and is independent of the coordinate system choice is also
introduced in thermodynamics. Introduction of the quantity U in known theories is
related with the use of special proper bases. In order to introduce the internal energy
of a physical system it turns out to be sufficient to determine the field of a certain
unit timelike vector u = uiЭi which is an eigenvector of the energy-momentum
tensor. Then the internal energy is determined in terms of the components of the
energy-momentum tensor by the relation of the form

U = uju
iPi

j . (B.16)

Usually in mechanics of continuous media the velocity vector of the individual
points of a medium is taken as the vector u.

From definitions (B.16), (B.7) it follows that the quantity U , calculated according
to (B.3), determines the volume density of the electromagnetic energy, which can
be considered as an analog of the internal energy in mechanics of continuous
medium. Bearing in mind definitions (B.12), (B.13) we find that in the proper basis
expression (B.3) for U hase the form [87]

U = 1

16π

√
(
FijF ij

)2 + (
Fij

∗
F ij

)2 = 1

8π

(
Ĕ2 + B̆2

)
,

where Ĕ = (0, 0, N), B̆ = (0, 0,Ω) are the three-dimensional magnetic field
induction and electric field vectors determined in the proper basis of the electro-
magnetic field. Thus, the internal energy U of the electromagnetic field is defined
here as the field energy (B.15) calculated in the proper basis.

If both invariants J1 and J2 of the electromagnetic field tensor are equal to zero
J1 = J2 = 0, then there exists the isotropic vector field u such that Pi

j = uiu
j ,
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uiu
i = 0. In this case U = 0 and one can assume that the internal energy of the

electromagnetic field is equal to zero.

B.3 The Maxwell Equations in the Proper Basis

The Maxwell equations in the proper basis of the electromagnetic field ĕa are written
as follows

∂̆bF̆
ab + Δ̆b,e

aF̆ eb + Δ̆b,e
bF̆ ae = 0,

∂̆bF̆
∗ab + Δ̆b,e

aF̆ ∗eb + Δ̆b,e
bF̆ ∗ae = 0, (B.17)

where the components of the electromagnetic field tensor F̆ ab are calculated in the
basis ĕa . F̆ ∗ab = 1

2ε
abcdF̆ab. Δ̆a,bc are the Ricci rotation coefficients corresponding

to the bases ĕa ; ∂̆b is the symbol of the partial derivative in the direction of the
vectors of the basis ĕa .

Taking into account definition (B.13) for the component Fab in the basis ĕa , the
Maxwell equations (B.17) can be transformed to the form

∂̆1η = Δ̆3,42 − Δ̆4,32, ∂̆1 ln U = Δ̆4,14 + Δ̆3,31,

∂̆2η = Δ̆4,31 − Δ̆3,41, ∂̆2 ln U = Δ̆4,24 + Δ̆3,32,

∂̆3η = Δ̆1,24 − Δ̆2,14, ∂̆3 ln U = Δ̆1,13 + Δ̆2,23,

∂̆4η = Δ̆1,23 − Δ̆2,13, ∂̆4 lnU = Δ̆1,14 + Δ̆2,24. (B.18)

The invariant η is connected with the invariants of the electromagnetic field Ω , N
by the relation

Ω + iN =
√
Ω2 + N2 exp iη.

Equation (B.18) can be written also directly in the components of the vectors of
the proper tetrad πi , ξ i , σ i , ui . For this it is sufficient to substitute the Ricci
rotation coefficients Δ̆a,bc in Eqs. (B.18) by formulas (3.150). As a result of identical
transformations we obtain the system of equations

∂̆1η = −ui∂̆3ξi + σ i∂̆4ξi , ∂j
(
Uπj

)+ Uπj ∂̆2ξj = 0,

∂̆2η = ui∂̆3πi − σ i ∂̆4πi, ∂j
(
Uξj

)+ Uξj ∂̆1πj = 0,

∂̆3η = πi∂̆2ui − ξ i ∂̆1ui, ∂j
(
Uσj

)− Uσj ∂̆4uj = 0,

∂̆4η = πi∂̆2σi − ξ i ∂̆1σi, ∂j
(
Uuj

)+ Uuj ∂̆3σj = 0. (B.19)
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The last equation in system (B.19) is identical with the energy equation
ui∂jPi

j = 0.

B.4 The Maxwell Equations in the Proper Null Basis

Let us introduce the null complex basis

ĕ◦
1 = liЭi , ĕ◦

2 = niЭi , ĕ◦
3 = miЭi , ĕ◦

4 = ṁiЭi ,

with components li , ni , mi , ṁi expressed in terms of the vector components of the
proper basis of the electromagnetic field

√
2 li = ui + σ i,

√
2 mi = πi − iξ i ,

√
2ni = ui − σ i,

√
2 ṁi = πi + iξ i . (B.20)

From Eqs. (B.14) it follows that the vectors ĕ◦
a with components (B.20) are the

eigenvalue vectors of the electromagnetic field tensor with components Fjs . Using
equalities (B.9) it is not difficult to show that the proper null basis ĕ◦

a of the
electromagnetic field is defined up to the two-parameter transformation

l′i = li exp(−α), ni = ni expα, m′
i = mi exp iϕ.

The Maxwell equations (B.18) in notations (3.152) of the spin-coefficients take
the form

D ln U = −� − �̇, Dη = i(−� + �̇),

Δ lnU = μ + μ̇, Δη = i(μ − μ̇),

δ ln U = −τ + π̇ , δη = i(−τ − π̇). (B.21)

Equations (B.21) can also be written as follows

� = −DG, μ = ΔG, τ = −δG, π = δ̇G,

where for the complex scalar G we have G = 1
2 (lnU − iη).



Appendix C
The Bilinear Identities Connecting
the Dirac Matrices

Let us give here the complete set of the invariant algebraic identities, connecting the
bilinear products of the matrices γ , which are often used in various calculations.
These identities are obtained by contracting the Pauli identity (3.21) with the

components of spintensors γ i , γ ij ,
∗
γ i , γ 5 and transformations with the aid of

identity (3.11).

4eDEeBA = eDAeBE + γiDAγ
i
BE − 1

2
γijDAγ

ij
BE + ∗

γ iDA

∗
γ i

BE − γ 5
DAγ

5
BE,

4eDEγ i
BA = γ i

DAeBE + eDAγ
i
BE + γ si

DAγsBE − γsDAγ
si
BE (C.1)

+ 1

2
εijks

(
γksDA

∗
γ jBE + ∗

γ jDAγksBE

)− γ 5
DA

∗
γ i

BE + ∗
γ i

DAγ
5
BE,

4eDEγ
ij

BA = δ
ij

ks

(
1

2
γ ks
DAeBE + 1

2
eDAγ

ks
BE − γ k

DAγ
s
BE − ∗

γ
k

DA

∗
γ

s

BE

+ γ kn
DAγ

s
nBE

)
− εijks

(
γkDA

∗
γ sBE + ∗

γ sDAγkBE + 1

2
γksDAγ

5
BE+

+ 1

2
γ 5
DAγksBE

)
,

4eDE
∗
γ i

BA = ∗
γ i

DAeBE + eDA
∗
γ i

BE + γ 5
DAγ

i
BE − γ i

DAγ
5
BE + ∗

γ jDAγ
ij
BE

− γ
ij

DA

∗
γ jBE − 1

2
εijks(γsDAγjkBE + γjkDAγsBE),

4eDEγ 5
BA = γ 5

DAeBE + eDAγ
5
BE + ∗

γ iDAγ
i
BE − γ i

DA

∗
γ iBE

− 1

4
εijksγ

ij

DAγ
ks
BE,

4γ i
DEγ 5

BA = ∗
γ i

DAeBE − eDA
∗
γ i

BE + γ 5
DAγ

i
BE + γ i

DAγ
5
BE − ∗

γ jDAγ
ij

BE
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− γ
ij
DA

∗
γ jBE + 1

2
εijks

(− γsDAγjkBE + γjkDAγsBE

)
,

4γ ij

DEγ 5
BA = δ

ij

ks

(
1

2
γ ks
DAγ

5
BE + 1

2
γ 5
DAγ

ks
BE − γ k

DA

∗
γ s

BE − ∗
γ s

DAγ
k
BE

)

+ εijks
(

− γ n
kDAγnsBE + 1

2
γksDAeBE + 1

2
eDAγksBE

− γkDAγsBE − ∗
γ kDA

∗
γ sBE

)
,

4
∗
γ i

DEγ 5
BA = −γ i

DAeBE + eDAγ
i
BE + γ 5

DA

∗
γ i

BE + ∗
γ i

DAγ
5
BE + γjDAγ

ij
BE

+ γ
ij
DAγjBE + 1

2
εijks

(
γksDA

∗
γ jBE − ∗

γ jDAγksBE

)
,

4γ 5
DEγ 5

BA = −eDAeBE + γiDAγ
i
BE + 1

2
γijDAγ

ij

BE + ∗
γ iDA

∗
γ i

BE + γ 5
DAγ

5
BE,

4γ i
DEγ

j
BA = γ

ij
DAeBE − eDAγ

ij
BE + γ i

DAγ
j
BE + γ

j
DAγ

i
BE − ∗

γ i
DA

∗
γ

j
BE

− ∗
γ

j
DA

∗
γ i

BE + γ ik
DAγ

j
kBE + γ

jk
DAγ

i
kBE + gij

(
eDAeBE − γsDAγ

s
BE

− 1

2
γksDAγ

ks
BE + ∗

γ sDA

∗
γ s

BE + γ 5
DAγ

5
BE

)
+ εijks

(
− γkDA

∗
γ sBE

+ ∗
γ sDAγkBE + 1

2
γksDAγ

5
BE − 1

2
γ 5
DAγksBE

)
,

4γm
DEγ

ij
BA = δ

ij
ks

[
1

2
γ ks
DAγ

m
BE + 1

2
γm
DAγ

ks
BE − γ sm

DAγ
k
BE − γ k

DAγ
sm
BE

+ gsm
(− γ k

DAeBE + eDAγ
k
BE + ∗

γ k
DAγ

5
BE + γ 5

DA

∗
γ k

BE + γ nk
DAγnBE

+ γnDAγ
nk
BE

)+ 1

2
εsmpq

( ∗
γ k

DAγpqBE − γpqDA
∗
γ k

BE

)
]

+ εijks
[
δmk
(− ∗

γ sDAeBE − eDA
∗
γ sBE − γsDAγ

5
BE + γ 5

DAγsBE

)

+ ∗
γ sDAγ

m
kBE − γm

kDA
∗
γ sBE

]
,

4γ i
DE

∗
γ

j

BA = γ i
DA

∗
γ
j

BE + γ
j

DA

∗
γ i

BE + ∗
γ

j

DAγ
i
BE + ∗

γ i
DAγ

j

BE − γ
ij

DAγ
5
BE

− γ 5
DAγ

ij
BE + gij

(
γ 5
DAeBE − eDAγ

5
BE − ∗

γ sDAγ
s
BE − γ s

DA

∗
γ sBE

+ 1

4
εijksγ

ij

DAγ
ks
BE

)
+ εijks

(
1

2
γksDAeBE + eDAγksBE + γkDAγsBE
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− ∗
γ kDA

∗
γ sBE

)
− 1

2

(
εimksγ j

mDA + εjmksγ i
mDA

)
γksBE,

4
∗
γ i

DE

∗
γ
j
BA = γ

ij
DAeBE − eDAγ

ij
BE − γ i

DAγ
j
BE − γ

j
DAγ

i
BE + ∗

γ i
DA

∗
γ

j
BE

+ ∗
γ

j
DA

∗
γ i

BE + γ ik
DAγ

j
kBE + γ

jk
DAγ

i
kBE + gij

(
eDAeBE + γsDAγ

s
BE

− 1

2
γksDAγ

ks
BE − ∗

γ sDA

∗
γ s

BE + γ 5
DAγ

5
BE

)
+ εijks

(
γkDA

∗
γ sBE

− ∗
γ sDAγkBE + 1

2
γksDAγ

5
BE − 1

2
γ 5
DAγksBE

)
,

4
∗
γm

DEγ
ij

BA = δ
ij

ks

[
1

2
γ ks
DA

∗
γm

BE + 1

2
∗
γm

DAγ
ks
BE − γ sm

DA

∗
γ k

BE − ∗
γ k

DAγ
sm
BE

+ gsm
(− ∗

γ k
DAeBE + eDA

∗
γ k

BE − γ k
DAγ

5
BE − γ 5

DAγ
k
BE + γ nk

DA

∗
γ nBE

+ ∗
γ nDAγ

nk
BE

)+ 1

2
εsmpq

(
γpqDAγ

k
BE − γ k

DAγpqBE

)
]

+ εijks
[
δmk
(
γsDAeBE + eDAγsBE − ∗

γ sDAγ
5
BE + γ 5

DA

∗
γ sBE

)

− γsDAγ
m
kBE + γm

kDAγsBE

]
,

4γ ij
DEγ ks

BA = (gikgjs − gisgjk)
(− eDAeBE + γ 5

DAγ
5
BE

)

+ εijks(eDAγ
5
BE + γ 5

DAeBE) + δ
ij
mnδ

ks
pq

[
1

4
γ

pq
DAγ

mn
BE − γ

mp
DAγ

qn
BE

+ gmp
(
γ

qn
DAeBE − eDAγ

qn
BE + γ

q
DAγ

n
BE + ∗

γ
q
DA

∗
γ n

BE + γ q
sDAγ

sn
BE

)
]

+ δ
ij
pnε

kspq
(− ∗

γ qDAγ
n
BE + γqDA

∗
γ n

BE − γ 5
DAη

n
qBE

)

+ δkspqε
ijqn

(
γ

p
DA

∗
γ nBE − ∗

γ
p
DAγnBE + γ p

nDAγ
5
BE

)

+ εkspqεijmn

[
− 1

4
γpqDAγmnBE + gmp

( ∗
γ qDA

∗
γ nBE + γqDAγnBE

)
]
.

Note also following useful identities which are the consequence of identities (C.1).

The Scalar and Pseudo-Scalar Identities

a. γiDEγ i
BA − ∗

γ iDE

∗
γ i

BA = −(γiDAγ
i
BE − ∗

γ iDA

∗
γ i

BE

)
,

b. γiDE
∗
γ i

BA + ∗
γ iDEγ i

BA = −(γiDA
∗
γ i

BE + ∗
γ iDAγ

i
BE

)
,
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c. γiDEγ i
BA − eDEeBA − γ 5

DEγ 5
BA =

= −(γiDAγ
i
BE − eDAeBE − γ 5

DAγ
5
BE

)
,

d.
∗
γ iDE

∗
γ i

BA − eDEeBA − γ 5
DEγ 5

BA =
= −( ∗

γ iDA

∗
γ i

BE − eDAeBE − γ 5
DAγ

5
BE

)
,

e. γiDE
∗
γ i

BA + eDEγ 5
BA − γ 5

DEeBA)

= −(γiDA
∗
γ i

BE + eDAγ
5
BE − γ 5

DAeBE

)
,

f.
∗
γ iDEγ i

BA − eDEγ 5
BA + γ 5

DEeBA)

= −( ∗
γ iDAγ

i
BE − eDAγ

5
BE + γ 5

DAeBE

)
,

g.
1

2
γijDEγ

ij
BA + eDEeBA − γ 5

DEγ 5
BA

= −
(

1

2
γijDAγ

ij

BE + eDAeBE − γ 5
DAγ

5
BE

)
,

h.
1

4
εijksγ

ij
DEγ ks

BA + eDEγ 5
BA + γ 5

DEeBA

= −
(

1

4
εijksγ

ij
DAγ

ks
BE + eDAγ

5
BE + γ 5

DAeBE

)
. (C.2)

The Vector and Pseudo-Vector Identities

∗
γ jDEγ

ij
BA + γ

ij
DE

∗
γ jBA + γ 5

DEγ i
BA + γ i

DEγ 5
BA (C.3)

= −( ∗
γ jDAγ

ij
BE + γ

ij
DA

∗
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DAγ
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DAγ
5
BE

)
,
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2
εijks
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γ s
DEγ

jk
BA + γ

jk
DEγ s

BA
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= −
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2
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DAγ
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jk
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s
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)
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,

γjDEγ
ij
BA + γ

ij
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DE

∗
γ i

BA − ∗
γ i

DEγ 5
BA

= −(γjDAγ
ij
BE + γ

ij
DAγjBE − γ 5

DA

∗
γ i
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γ i

DAγ
5
BE

)
,

1

2
εijks
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DEγ
jk

BA + γ
jk
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∗
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BA
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2
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